MMP14 from BM-MSCs facilitates progression and Ara-C resistance in acute myeloid leukemia via the JAK/STAT pathway.

IF 9.4 1区 医学 Q1 HEMATOLOGY
Jinxian Wu, Xinqi Li, Yin Liu, Guopeng Chen, Ruihang Li, Hongqiang Jiang, Wanyue Yin, Xiqin Tong, Rui Cao, Xianwang Wang, Xiaoyan Liu, Fuling Zhou
{"title":"MMP14 from BM-MSCs facilitates progression and Ara-C resistance in acute myeloid leukemia via the JAK/STAT pathway.","authors":"Jinxian Wu, Xinqi Li, Yin Liu, Guopeng Chen, Ruihang Li, Hongqiang Jiang, Wanyue Yin, Xiqin Tong, Rui Cao, Xianwang Wang, Xiaoyan Liu, Fuling Zhou","doi":"10.1186/s40164-025-00635-6","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence underscores the pivotal impact of crosstalk between leukemic stem cells (LSCs) and mesenchymal stromal cells (MSCs) within their niche on leukemia initiation, progression, and therapy response. Although MMP14 plays an important role in inflammation and cancer, the regulation and role of MSC-derived MMP14 in acute myeloid leukemia (AML) are largely unknown. Here, we found that AML patient-derived MSCs (AML-MSCs) were more supportive of AML cell growth compared to healthy donor-derived MSCs (HD-MSCs). Moreover, AML-MSCs and HD-MSCs showed significant differences in gene expression and protein expression profiles. Knockdown of MMP14 in MSCs inhibited the CFU-F ability of MSC cells and increased the proportion of cells in the G0 phase, thereby inhibiting proliferation. Co-culture with MSCs inhibited the proliferation and cell cycle progression of leukemia cells, while increasing the apoptosis rate, thus impairing the leukemogenic potential of AML cells both in vitro and in vivo. Mechanistic studies revealed that MMP14-mediated alterations in the AML stromal microenvironment are driven by PGE2 secretion and activation of the JAK-STAT pathway, promoting leukemia progression. Notably, inhibition of MMP14 can attenuate the chemotherapy resistance of AML cells induced by MSCs to cytarabine (Ara-C). Together, our study, for the first time, demonstrates the critical role of MSC-derived MMP14 in promoting AML progression and chemoresistance. Targeting MMP14 signaling pathways may offer novel therapeutic options for AML.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"43"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00635-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Growing evidence underscores the pivotal impact of crosstalk between leukemic stem cells (LSCs) and mesenchymal stromal cells (MSCs) within their niche on leukemia initiation, progression, and therapy response. Although MMP14 plays an important role in inflammation and cancer, the regulation and role of MSC-derived MMP14 in acute myeloid leukemia (AML) are largely unknown. Here, we found that AML patient-derived MSCs (AML-MSCs) were more supportive of AML cell growth compared to healthy donor-derived MSCs (HD-MSCs). Moreover, AML-MSCs and HD-MSCs showed significant differences in gene expression and protein expression profiles. Knockdown of MMP14 in MSCs inhibited the CFU-F ability of MSC cells and increased the proportion of cells in the G0 phase, thereby inhibiting proliferation. Co-culture with MSCs inhibited the proliferation and cell cycle progression of leukemia cells, while increasing the apoptosis rate, thus impairing the leukemogenic potential of AML cells both in vitro and in vivo. Mechanistic studies revealed that MMP14-mediated alterations in the AML stromal microenvironment are driven by PGE2 secretion and activation of the JAK-STAT pathway, promoting leukemia progression. Notably, inhibition of MMP14 can attenuate the chemotherapy resistance of AML cells induced by MSCs to cytarabine (Ara-C). Together, our study, for the first time, demonstrates the critical role of MSC-derived MMP14 in promoting AML progression and chemoresistance. Targeting MMP14 signaling pathways may offer novel therapeutic options for AML.

来自骨髓间充质干细胞的MMP14通过JAK/STAT途径促进急性髓系白血病的进展和Ara-C耐药。
越来越多的证据强调了白血病干细胞(LSCs)和间充质基质细胞(MSCs)在其生态位内的串扰对白血病的发生、进展和治疗反应的关键影响。尽管MMP14在炎症和癌症中发挥重要作用,但msc来源的MMP14在急性髓性白血病(AML)中的调节和作用在很大程度上是未知的。在这里,我们发现AML患者来源的MSCs (AML-MSCs)比健康供体来源的MSCs (HD-MSCs)更支持AML细胞的生长。此外,AML-MSCs和HD-MSCs在基因表达和蛋白表达谱上存在显著差异。MMP14在MSCs中表达下调可抑制MSC细胞的CFU-F能力,增加处于G0期的细胞比例,从而抑制增殖。与MSCs共培养抑制了白血病细胞的增殖和细胞周期进程,同时增加了细胞凋亡率,从而在体外和体内均削弱了AML细胞的致白血病潜能。机制研究表明,mmp14介导的AML间质微环境的改变是由PGE2分泌和JAK-STAT通路的激活驱动的,从而促进白血病的进展。值得注意的是,抑制MMP14可以减弱MSCs诱导的AML细胞对阿糖胞苷(Ara-C)的化疗耐药性。总之,我们的研究首次证明了msc衍生的MMP14在促进AML进展和化疗耐药中的关键作用。靶向MMP14信号通路可能为AML提供新的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信