Lactate accumulation drives hepatocellular carcinoma metastasis through facilitating tumor-derived exosome biogenesis by Rab7A lactylation.

IF 9.1 1区 医学 Q1 ONCOLOGY
Chenhao Jiang, Xinyi He, Xialin Chen, Jianyang Huang, Yasong Liu, Jianhao Zhang, Huaxin Chen, Xin Sui, Xing Lv, Xuegang Zhao, Cuicui Xiao, Jiaqi Xiao, Jiebin Zhang, Tongyu Lu, Haitian Chen, Haibo Li, Hongmiao Wang, Guo Lv, Linsen Ye, Rong Li, Jun Zheng, Jia Yao, Yinqian Kang, Tao Wang, Hua Li, Jiancheng Wang, Yingcai Zhang, Guihua Chen, Jianye Cai, Andy Peng Xiang, Yang Yang
{"title":"Lactate accumulation drives hepatocellular carcinoma metastasis through facilitating tumor-derived exosome biogenesis by Rab7A lactylation.","authors":"Chenhao Jiang, Xinyi He, Xialin Chen, Jianyang Huang, Yasong Liu, Jianhao Zhang, Huaxin Chen, Xin Sui, Xing Lv, Xuegang Zhao, Cuicui Xiao, Jiaqi Xiao, Jiebin Zhang, Tongyu Lu, Haitian Chen, Haibo Li, Hongmiao Wang, Guo Lv, Linsen Ye, Rong Li, Jun Zheng, Jia Yao, Yinqian Kang, Tao Wang, Hua Li, Jiancheng Wang, Yingcai Zhang, Guihua Chen, Jianye Cai, Andy Peng Xiang, Yang Yang","doi":"10.1016/j.canlet.2025.217636","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have demonstrated that lactate accumulation, a common hallmark for metabolic deprivation in solid tumors, could actively drive tumor invasion and metastasis. However, whether lactate influences the biogenesis of tumor-derived exosomes (TDEs), the prerequisite for distant metastasis formation, remains unknown. Here, we demonstrated that extracellular lactate, after taken up by tumor cells via lactate transporter MCT1, drove the release of TDE mainly through facilitating multivesicular body (MVB) trafficking towards plasma membrane instead of lysosome. Mechanistically, lactate promoted p300-mediated Rab7A lactylation, which hereafter inhibited its GTPase activity and promoted MVB docking with plasma membrane. Moreover, lactate administration enriched integrin β4 and ECM remodeling-related proteins in TDE cargos, which promoted pulmonary pre-metastatic niche formation. Combinatorial inhibition of MCT1 and p300 significantly abrogated HCC metastasis in a clinical-relevant PDX model. In summary, we demonstrated that lactate promote TDE biogenesis and HCC pulmonary metastasis, and proposed a potential clinical strategy targeting TDEs to prevent HCC metastasis.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217636"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.217636","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have demonstrated that lactate accumulation, a common hallmark for metabolic deprivation in solid tumors, could actively drive tumor invasion and metastasis. However, whether lactate influences the biogenesis of tumor-derived exosomes (TDEs), the prerequisite for distant metastasis formation, remains unknown. Here, we demonstrated that extracellular lactate, after taken up by tumor cells via lactate transporter MCT1, drove the release of TDE mainly through facilitating multivesicular body (MVB) trafficking towards plasma membrane instead of lysosome. Mechanistically, lactate promoted p300-mediated Rab7A lactylation, which hereafter inhibited its GTPase activity and promoted MVB docking with plasma membrane. Moreover, lactate administration enriched integrin β4 and ECM remodeling-related proteins in TDE cargos, which promoted pulmonary pre-metastatic niche formation. Combinatorial inhibition of MCT1 and p300 significantly abrogated HCC metastasis in a clinical-relevant PDX model. In summary, we demonstrated that lactate promote TDE biogenesis and HCC pulmonary metastasis, and proposed a potential clinical strategy targeting TDEs to prevent HCC metastasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer letters
Cancer letters 医学-肿瘤学
CiteScore
17.70
自引率
2.10%
发文量
427
审稿时长
15 days
期刊介绍: Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research. Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy. By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信