Madeleine Birgersson, Matilda Holm, Carlos J Gallardo-Dodd, Baizhen Chen, Lina Stepanauskaitė, Linnea Hases, Claudia Kutter, Amena Archer, Cecilia Williams
{"title":"Intestinal estrogen receptor beta modulates the murine colon tumor immune microenvironment.","authors":"Madeleine Birgersson, Matilda Holm, Carlos J Gallardo-Dodd, Baizhen Chen, Lina Stepanauskaitė, Linnea Hases, Claudia Kutter, Amena Archer, Cecilia Williams","doi":"10.1016/j.canlet.2025.217661","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic inflammation contributes to the development of colorectal cancer, partly through its regulation of the microenvironment and antitumor immunity. Interestingly, women have a lower incidence of colorectal cancer, and estrogen treatment has been shown to reduce the occurrence of colorectal tumors. While intestinal estrogen receptor beta (ERβ, Esr2) can protect against colitis and colitis-induced cancer in mice, its role in shaping the tumor microenvironment remains unknown. In this study, we performed RNA sequencing to analyze the transcriptome of colonic epithelia and tumors from azoxymethane/dextran sulfate sodium-treated wild-type and intestinal ERβ knockout (ERβKO<sup>Vil</sup>) mice and vehicle-treated controls. This revealed significant differences in gene expression and enriched biological processes influenced by sex and genotype, with immune-related responses being overrepresented. Deconvolution supported differential immune cell abundance and immunostaining showed that tumors from ERβKO<sup>Vil</sup> mice displayed significantly increased macrophage infiltration, decreased T cell infiltration, and impaired natural killer cell infiltration. Further, ERβ mRNA levels in clinical colorectal tumors correlated with immune signaling profiles and better survival. Our findings indicate that intestinal ERβ promotes an antitumor microenvironment and could potentially affect the effectiveness of immunotherapy. These insights highlight the importance of ERβ in modulating antitumor immunity and underscore its therapeutic potential in colorectal cancer.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217661"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.217661","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic inflammation contributes to the development of colorectal cancer, partly through its regulation of the microenvironment and antitumor immunity. Interestingly, women have a lower incidence of colorectal cancer, and estrogen treatment has been shown to reduce the occurrence of colorectal tumors. While intestinal estrogen receptor beta (ERβ, Esr2) can protect against colitis and colitis-induced cancer in mice, its role in shaping the tumor microenvironment remains unknown. In this study, we performed RNA sequencing to analyze the transcriptome of colonic epithelia and tumors from azoxymethane/dextran sulfate sodium-treated wild-type and intestinal ERβ knockout (ERβKOVil) mice and vehicle-treated controls. This revealed significant differences in gene expression and enriched biological processes influenced by sex and genotype, with immune-related responses being overrepresented. Deconvolution supported differential immune cell abundance and immunostaining showed that tumors from ERβKOVil mice displayed significantly increased macrophage infiltration, decreased T cell infiltration, and impaired natural killer cell infiltration. Further, ERβ mRNA levels in clinical colorectal tumors correlated with immune signaling profiles and better survival. Our findings indicate that intestinal ERβ promotes an antitumor microenvironment and could potentially affect the effectiveness of immunotherapy. These insights highlight the importance of ERβ in modulating antitumor immunity and underscore its therapeutic potential in colorectal cancer.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.