{"title":"The Influence of Homologous Recombination Repair on Temozolomide Chemosensitivity in Gliomas.","authors":"Biyun Zeng, Hansen Shi, Tiancai Liu, Jinjing Tang, Juncheng Lin, Xiaocong Lin, Tao Zeng","doi":"10.1093/carcin/bgaf017","DOIUrl":null,"url":null,"abstract":"<p><p>Gliomas represent a prevalent form of primary brain tumors, with temozolomide (TMZ) serving as the established first-line therapeutic option. Nevertheless, the effectiveness of TMZ is hindered by the development of chemoresistance. Recent investigations have underscored the correlation of homologous recombination repair (HRR), a pivotal mechanism responsible for mending DNA double-strand breaks, with TMZ resistance in glioma treatment. This review centers on elucidating the significance of HRR in the management of gliomas, with a particular emphasis on pivotal molecules implicated in the HRR process, including RAD51, ATM, ATR, and newly identified small molecules that impact HRR. Modulating the expression of these genes can effectively restrain pathways such as ATM/CHK2, ATR/CHK1, and PI3K/AKT, subsequently augmenting the sensitivity of gliomas to TMZ. Noteworthy efforts have been directed towards exploring inhibitors of these pathways in recent research endeavors, culminating in encouraging outcomes. In conclusion, the involvement of HRR in glioma resistance unveils novel therapeutic avenues, with targeting crucial molecules in the HRR pathway, holding promise for enhancing the effectiveness of TMZ therapy.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgaf017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gliomas represent a prevalent form of primary brain tumors, with temozolomide (TMZ) serving as the established first-line therapeutic option. Nevertheless, the effectiveness of TMZ is hindered by the development of chemoresistance. Recent investigations have underscored the correlation of homologous recombination repair (HRR), a pivotal mechanism responsible for mending DNA double-strand breaks, with TMZ resistance in glioma treatment. This review centers on elucidating the significance of HRR in the management of gliomas, with a particular emphasis on pivotal molecules implicated in the HRR process, including RAD51, ATM, ATR, and newly identified small molecules that impact HRR. Modulating the expression of these genes can effectively restrain pathways such as ATM/CHK2, ATR/CHK1, and PI3K/AKT, subsequently augmenting the sensitivity of gliomas to TMZ. Noteworthy efforts have been directed towards exploring inhibitors of these pathways in recent research endeavors, culminating in encouraging outcomes. In conclusion, the involvement of HRR in glioma resistance unveils novel therapeutic avenues, with targeting crucial molecules in the HRR pathway, holding promise for enhancing the effectiveness of TMZ therapy.
期刊介绍:
Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).