{"title":"SLC3A2-Mediated Lysine Uptake by Cancer Cells Restricts T cell Activity in Hepatocellular Carcinoma.","authors":"Yating Chang, Naizhen Wang, Shaopeng Li, Jiaqi Zhang, Yipeng Rao, Zilong Xu, Lu Li, Hongning Wu, Jun Chen, Yanhua Lin, Xiaoxuan Huang, Pingguo Liu, Jun Zhang, Yueting Liao, Chaolong Lin, Chenghao Huang, Ningshao Xia","doi":"10.1158/0008-5472.CAN-24-3180","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal amino acid metabolism supports cancer cell proliferation, invasion, and immune evasion in hepatocellular carcinoma (HCC). Previous research exploring amino acid metabolism in HCC has primarily focused on how metabolic reprogramming impacts tumor cells. Here, we focused on the role of amino acid metabolism dysregulation in the crosstalk between HCC and T cells. HCC cells disrupted lysine uptake in T cells, leading to impaired T cell immunity. Lysine deprivation decreased STAT3 levels in T cells, inhibiting T cell proliferation and effector function and ultimately promoting tumor progression. Mechanistically, HCC cells outcompeted T cells for lysine by expressing high levels of the lysine transporter SLC3A2. Clinically, elevated SLC3A2 expression correlated with poor survival and was linked to dysregulated T cell functional gene signatures in HCC patients. Furthermore, the multikinase inhibitor lenvatinib induced a c-Myc-SLC3A2 regulatory axis that limited the efficacy of lenvatinib treatment. Lysine supplementation enhanced tumor sensitivity to combined treatment with lenvatinib and anti-PD-1 immunotherapy. These findings suggest that lysine supplementation is a potential therapeutic strategy for treating HCC and enhancing the sensitivity of HCC to tyrosine kinase inhibitors and immune checkpoint blockade.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-3180","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abnormal amino acid metabolism supports cancer cell proliferation, invasion, and immune evasion in hepatocellular carcinoma (HCC). Previous research exploring amino acid metabolism in HCC has primarily focused on how metabolic reprogramming impacts tumor cells. Here, we focused on the role of amino acid metabolism dysregulation in the crosstalk between HCC and T cells. HCC cells disrupted lysine uptake in T cells, leading to impaired T cell immunity. Lysine deprivation decreased STAT3 levels in T cells, inhibiting T cell proliferation and effector function and ultimately promoting tumor progression. Mechanistically, HCC cells outcompeted T cells for lysine by expressing high levels of the lysine transporter SLC3A2. Clinically, elevated SLC3A2 expression correlated with poor survival and was linked to dysregulated T cell functional gene signatures in HCC patients. Furthermore, the multikinase inhibitor lenvatinib induced a c-Myc-SLC3A2 regulatory axis that limited the efficacy of lenvatinib treatment. Lysine supplementation enhanced tumor sensitivity to combined treatment with lenvatinib and anti-PD-1 immunotherapy. These findings suggest that lysine supplementation is a potential therapeutic strategy for treating HCC and enhancing the sensitivity of HCC to tyrosine kinase inhibitors and immune checkpoint blockade.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.