LL37 complexed to double-stranded RNA induces RIG-I-like receptor signalling and Gasdermin E activation facilitating IL-36γ release from keratinocytes.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Jennifer Keller, Judit Danis, Isabella Krehl, Eleftheria Girousi, Takashi K Satoh, Barbara Meier-Schiesser, Lajos Kemény, Márta Széll, W Wei-Lynn Wong, Steve Pascolo, Lars E French, Thomas M Kündig, Mark Mellett
{"title":"LL37 complexed to double-stranded RNA induces RIG-I-like receptor signalling and Gasdermin E activation facilitating IL-36γ release from keratinocytes.","authors":"Jennifer Keller, Judit Danis, Isabella Krehl, Eleftheria Girousi, Takashi K Satoh, Barbara Meier-Schiesser, Lajos Kemény, Márta Széll, W Wei-Lynn Wong, Steve Pascolo, Lars E French, Thomas M Kündig, Mark Mellett","doi":"10.1038/s41419-025-07537-9","DOIUrl":null,"url":null,"abstract":"<p><p>The Interleukin-36 (IL-36) cytokine family have emerged as important players in mounting an inflammatory response at epithelial barriers and tailoring appropriate adaptive immune responses. As members of the Interleukin-1 superfamily, IL-36 cytokines lack a signal peptide for conventional secretion and require extracellular proteolysis to generate bioactive cytokines. Although the IL-36 family plays an important role in the pathogenesis of plaque and pustular psoriasis, little is known about the release mechanisms of these cytokines from keratinocytes and the physiological stimuli involved. Nucleic acid released from damaged or dying keratinocytes initiates early inflammatory signals that result in the breaking of tolerance associated with psoriasis pathogenesis onset. Cathelicidin peptide, LL37 binds to DNA or double-stranded RNA (dsRNA) and activates a type I Interferon responses in plasmacytoid dendritic cells and keratinocytes. Here, we demonstrate that LL37 binds to dsRNA and induces IL-36γ release from human primary keratinocytes. LL37/dsRNA complexes activate RIG-I-like Receptor signalling, resulting in Caspase-3 and Gasdermin E (GSDME) cleavage. Subsequent GSDME pore formation facilitates IL-36γ release. This response is magnified by priming with psoriasis-associated cytokines, IL-17A and IFNγ. IL-36γ release in this manner is largely independent of cell death in primary keratinocytes and lacked extracellular proteolysis of IL-36γ. Conversely, transfection of keratinocytes directly with dsRNA synthetic analogue, Poly(I:C) induces NLRP1 inflammasome activation, which facilitates IL-36γ expression and release in a GSDMD-dependent manner. Inflammasome-associated cell death also enables extracellular processing of IL-36γ by the release of keratinocyte-derived proteases. These data highlight the distinct responses triggered by dsRNA sensors in keratinocytes. Depending on the inflammatory context and magnitude of the exogenous threat, keratinocytes will release IL-36γ coupled with cell death and extracellular cleavage or release the inactive pro-form, which requires subsequent processing by neutrophil proteases to unleash full biological activity, as occurring in psoriatic skin. Cytoplasmic sensing of dsRNA in keratinocytes mediates IL-36γ release via caspase activity and GSDM pore formation Keratinocytes release IL-36γ upon stimulation with intracellular dsRNA alone or complexed to the psoriasis-associated cathelicidin anti-microbial peptide LL37. Left: Transfected dsRNA triggers NLRP1 inflammasome assembly and IL-1β release, which can enhance IL-36γ expression, resulting in IL-36γ release and extracellular cleavage by released proteases. Right: LL37/dsRNA complexes activate a MDA5-MAVS pathway facilitating the release of IL-36γ through Caspase-3 activation and GSDME pore formation.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"198"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07537-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Interleukin-36 (IL-36) cytokine family have emerged as important players in mounting an inflammatory response at epithelial barriers and tailoring appropriate adaptive immune responses. As members of the Interleukin-1 superfamily, IL-36 cytokines lack a signal peptide for conventional secretion and require extracellular proteolysis to generate bioactive cytokines. Although the IL-36 family plays an important role in the pathogenesis of plaque and pustular psoriasis, little is known about the release mechanisms of these cytokines from keratinocytes and the physiological stimuli involved. Nucleic acid released from damaged or dying keratinocytes initiates early inflammatory signals that result in the breaking of tolerance associated with psoriasis pathogenesis onset. Cathelicidin peptide, LL37 binds to DNA or double-stranded RNA (dsRNA) and activates a type I Interferon responses in plasmacytoid dendritic cells and keratinocytes. Here, we demonstrate that LL37 binds to dsRNA and induces IL-36γ release from human primary keratinocytes. LL37/dsRNA complexes activate RIG-I-like Receptor signalling, resulting in Caspase-3 and Gasdermin E (GSDME) cleavage. Subsequent GSDME pore formation facilitates IL-36γ release. This response is magnified by priming with psoriasis-associated cytokines, IL-17A and IFNγ. IL-36γ release in this manner is largely independent of cell death in primary keratinocytes and lacked extracellular proteolysis of IL-36γ. Conversely, transfection of keratinocytes directly with dsRNA synthetic analogue, Poly(I:C) induces NLRP1 inflammasome activation, which facilitates IL-36γ expression and release in a GSDMD-dependent manner. Inflammasome-associated cell death also enables extracellular processing of IL-36γ by the release of keratinocyte-derived proteases. These data highlight the distinct responses triggered by dsRNA sensors in keratinocytes. Depending on the inflammatory context and magnitude of the exogenous threat, keratinocytes will release IL-36γ coupled with cell death and extracellular cleavage or release the inactive pro-form, which requires subsequent processing by neutrophil proteases to unleash full biological activity, as occurring in psoriatic skin. Cytoplasmic sensing of dsRNA in keratinocytes mediates IL-36γ release via caspase activity and GSDM pore formation Keratinocytes release IL-36γ upon stimulation with intracellular dsRNA alone or complexed to the psoriasis-associated cathelicidin anti-microbial peptide LL37. Left: Transfected dsRNA triggers NLRP1 inflammasome assembly and IL-1β release, which can enhance IL-36γ expression, resulting in IL-36γ release and extracellular cleavage by released proteases. Right: LL37/dsRNA complexes activate a MDA5-MAVS pathway facilitating the release of IL-36γ through Caspase-3 activation and GSDME pore formation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信