{"title":"A Genome-Wide Synthetic Lethal Screen Identifies Spermidine Synthase as a Target to Enhance Erdafitinib Efficacy in FGFR-Mutant Bladder Cancer.","authors":"Yanchao Yu, Xincheng Gao, Huayuan Zhao, Jiayin Sun, Miao Wang, Xing Xiong, Junping Li, Chao Huang, Hui Zhang, Guosong Jiang, Xingyuan Xiao","doi":"10.1158/0008-5472.CAN-24-3217","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations of the FGFR family members are frequently observed in metastatic bladder cancer. The development of erdafitinib, a pan-FGFR inhibitor, provided a significant therapeutic advance in bladder cancer, but resistance still limits its efficacy. In this study, we performed an unbiased whole-genome CRISPR-Cas9 synthetic lethal screen on FGFR-mutant bladder cancer cell lines treated with erdafitinib and identified spermidine synthase (SRM) as a critical contributor to erdafitinib resistance. Moreover, hypusinated eIF5A, catalyzed by SRM-mediated spermidine production, facilitated the efficient translation of HMGA2, which in turn promoted the expression of EGFR. Notably, pharmacologic inhibition of SRM enhanced the efficacy of erdafitinib both in vitro and in vivo. Together, these results offer evidence that targeting SRM could attenuate the translation of HMGA2 and subsequently reduce EGFR transcription, thus enhancing the sensitivity of FGFR-mutant bladder cancer cells to erdafitinib treatment.</p><p><strong>Significance: </strong>Combined inhibition of polyamine metabolism and FGFR is a promising therapeutic strategy to overcome erdafitinib resistance and improve treatment for patients with FGFR-mutant bladder cancer.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"2288-2301"},"PeriodicalIF":16.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-3217","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations of the FGFR family members are frequently observed in metastatic bladder cancer. The development of erdafitinib, a pan-FGFR inhibitor, provided a significant therapeutic advance in bladder cancer, but resistance still limits its efficacy. In this study, we performed an unbiased whole-genome CRISPR-Cas9 synthetic lethal screen on FGFR-mutant bladder cancer cell lines treated with erdafitinib and identified spermidine synthase (SRM) as a critical contributor to erdafitinib resistance. Moreover, hypusinated eIF5A, catalyzed by SRM-mediated spermidine production, facilitated the efficient translation of HMGA2, which in turn promoted the expression of EGFR. Notably, pharmacologic inhibition of SRM enhanced the efficacy of erdafitinib both in vitro and in vivo. Together, these results offer evidence that targeting SRM could attenuate the translation of HMGA2 and subsequently reduce EGFR transcription, thus enhancing the sensitivity of FGFR-mutant bladder cancer cells to erdafitinib treatment.
Significance: Combined inhibition of polyamine metabolism and FGFR is a promising therapeutic strategy to overcome erdafitinib resistance and improve treatment for patients with FGFR-mutant bladder cancer.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.