L-tyrosine alleviates autism-like behavior in mice by remodeling the gut microbiota

IF 8.8 2区 医学 Q1 IMMUNOLOGY
Jingjing Fang , Jingya Guo , Yujie Lao , Seong-Gook Kang , Kunlun Huang , Tao Tong
{"title":"L-tyrosine alleviates autism-like behavior in mice by remodeling the gut microbiota","authors":"Jingjing Fang ,&nbsp;Jingya Guo ,&nbsp;Yujie Lao ,&nbsp;Seong-Gook Kang ,&nbsp;Kunlun Huang ,&nbsp;Tao Tong","doi":"10.1016/j.bbi.2025.03.025","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is characterized by impaired social interaction and repetitive stereotyped behavior, and effective interventions for the core autistic symptoms are currently limited. This study examines the protective role of L-tyrosine in alleviating ASD-like behavioral disorders in a valproic acid (VPA)-induced ASD mouse model and explores the underlying mechanisms via integrated multi-omics. We first investigated the potential of dietary L-tyrosine in mitigating autistic behavior. Subsequently, 16S rRNA sequencing, hippocampal transcriptomics, and neurotransmitter metabolome were employed to elucidate the underlying mechanism. Further, we conducted transplantation of the L-tyrosine-regulated microbiota in VPA-induced ASD mice. The results showed that L-tyrosine supplementation significantly mitigates ASD-like behavioral disorders, alleviates social communication deficits, and reduces repetitive behavior in autistic mice. L-tyrosine also attenuates the neuronal loss caused by VPA treatment in the DG and CA1 hippocampal regions in mice. The hippocampi of the L-tyrosine-treated mouse model for ASD displays modified gene expression profiles and different neurotransmitter levels. L-tyrosine also mitigates colonic barrier damage and amends the gut microbial composition and function. The integrative transcriptomic, metabolomic, and microbiome analysis shows strong connections between the hippocampal genes, neurotransmitters, and gut microbiota affected by L-tyrosine. The transplantation of microbiota from L-tyrosine-treated mice to VPA-induced ASD mice recipients recapitulated the preventive and protective effects of L-tyrosine on autistic behavior disorders. These findings suggest that dietary L-tyrosine may represent a viable, effective treatment option for managing the physiological and behavioral deficits associated with ASD.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"127 ","pages":"Pages 358-374"},"PeriodicalIF":8.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125001102","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder (ASD) is characterized by impaired social interaction and repetitive stereotyped behavior, and effective interventions for the core autistic symptoms are currently limited. This study examines the protective role of L-tyrosine in alleviating ASD-like behavioral disorders in a valproic acid (VPA)-induced ASD mouse model and explores the underlying mechanisms via integrated multi-omics. We first investigated the potential of dietary L-tyrosine in mitigating autistic behavior. Subsequently, 16S rRNA sequencing, hippocampal transcriptomics, and neurotransmitter metabolome were employed to elucidate the underlying mechanism. Further, we conducted transplantation of the L-tyrosine-regulated microbiota in VPA-induced ASD mice. The results showed that L-tyrosine supplementation significantly mitigates ASD-like behavioral disorders, alleviates social communication deficits, and reduces repetitive behavior in autistic mice. L-tyrosine also attenuates the neuronal loss caused by VPA treatment in the DG and CA1 hippocampal regions in mice. The hippocampi of the L-tyrosine-treated mouse model for ASD displays modified gene expression profiles and different neurotransmitter levels. L-tyrosine also mitigates colonic barrier damage and amends the gut microbial composition and function. The integrative transcriptomic, metabolomic, and microbiome analysis shows strong connections between the hippocampal genes, neurotransmitters, and gut microbiota affected by L-tyrosine. The transplantation of microbiota from L-tyrosine-treated mice to VPA-induced ASD mice recipients recapitulated the preventive and protective effects of L-tyrosine on autistic behavior disorders. These findings suggest that dietary L-tyrosine may represent a viable, effective treatment option for managing the physiological and behavioral deficits associated with ASD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
29.60
自引率
2.00%
发文量
290
审稿时长
28 days
期刊介绍: Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals. As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信