Aidan Boyne, Hsiang J Yeh, Anthony K Allam, Brandon M Brown, Mohammad Tabaeizadeh, John M Stern, R James Cotton, Zulfi Haneef
{"title":"Video-based detection of tonic-clonic seizures using a three-dimensional convolutional neural network.","authors":"Aidan Boyne, Hsiang J Yeh, Anthony K Allam, Brandon M Brown, Mohammad Tabaeizadeh, John M Stern, R James Cotton, Zulfi Haneef","doi":"10.1111/epi.18381","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Seizure detection in epilepsy monitoring units (EMUs) is essential for the clinical assessment of drug-resistant epilepsy. Automated video analysis using machine learning provides a promising aid for seizure detection, with resultant reduction in the resources required for diagnostic monitoring. We employ a three-dimensional (3D) convolutional neural network with fully fine-tuned backbone layers to identify seizures from EMU videos.</p><p><strong>Methods: </strong>A two-stream inflated 3D-ConvNet architecture (I3D) classified video clips as a seizure or not a seizure. A pretrained action classifier was fine-tuned on 11 h of video containing 49 tonic-clonic seizures from 25 patients monitored at a large academic hospital (site A) using leave-one-patient-out cross-validation. Performance was evaluated by comparing model predictions to ground-truth annotations obtained from video-electroencephalographic review by an epileptologist on videos from site A and a separate dataset from a second large academic hospital (site B).</p><p><strong>Results: </strong>The model achieved a leave-one-patient-out cross-validation F1-score of .960 ± .007 (mean ± SD) and area under the receiver operating curve score of .988 ± .004 at site A. Evaluation on full videos detected all seizures (95% binomial exact confidence interval = 94.1%-100%), with median detection latency of 0.0 s (interquartile range = 0.0-3.0) from seizure onset. The site A model had an average false alarm rate of 1.81 alarms per hour, although 36 of the 49 videos (73.5%) had no false alarms. Evaluation at site B demonstrated generalizability of the architecture and training strategy, although cross-site evaluation (site A model tested on site B data and vice versa) resulted in diminished performance.</p><p><strong>Significance: </strong>Our model demonstrates high performance in the detection of epileptic seizures from video data using a fine-tuned I3D model and outperforms similar models identified in the literature. This study provides a foundation for future work in real-time EMU seizure monitoring and possibly for reliable, cost-effective at-home detection of tonic-clonic seizures.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18381","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Seizure detection in epilepsy monitoring units (EMUs) is essential for the clinical assessment of drug-resistant epilepsy. Automated video analysis using machine learning provides a promising aid for seizure detection, with resultant reduction in the resources required for diagnostic monitoring. We employ a three-dimensional (3D) convolutional neural network with fully fine-tuned backbone layers to identify seizures from EMU videos.
Methods: A two-stream inflated 3D-ConvNet architecture (I3D) classified video clips as a seizure or not a seizure. A pretrained action classifier was fine-tuned on 11 h of video containing 49 tonic-clonic seizures from 25 patients monitored at a large academic hospital (site A) using leave-one-patient-out cross-validation. Performance was evaluated by comparing model predictions to ground-truth annotations obtained from video-electroencephalographic review by an epileptologist on videos from site A and a separate dataset from a second large academic hospital (site B).
Results: The model achieved a leave-one-patient-out cross-validation F1-score of .960 ± .007 (mean ± SD) and area under the receiver operating curve score of .988 ± .004 at site A. Evaluation on full videos detected all seizures (95% binomial exact confidence interval = 94.1%-100%), with median detection latency of 0.0 s (interquartile range = 0.0-3.0) from seizure onset. The site A model had an average false alarm rate of 1.81 alarms per hour, although 36 of the 49 videos (73.5%) had no false alarms. Evaluation at site B demonstrated generalizability of the architecture and training strategy, although cross-site evaluation (site A model tested on site B data and vice versa) resulted in diminished performance.
Significance: Our model demonstrates high performance in the detection of epileptic seizures from video data using a fine-tuned I3D model and outperforms similar models identified in the literature. This study provides a foundation for future work in real-time EMU seizure monitoring and possibly for reliable, cost-effective at-home detection of tonic-clonic seizures.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.