TOM1L1 mediated the sort of tumor suppressive miR-378a-3p into exosomes and the excretion out of cells to promote ESCC progression.

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lu Wang, Huijuan Liu, Guohui Chen, Qinglu Wu, Songrui Xu, Qichao Zhou, Yadong Zhao, Qiaorong Wang, Ting Yan, Xiaolong Cheng
{"title":"TOM1L1 mediated the sort of tumor suppressive miR-378a-3p into exosomes and the excretion out of cells to promote ESCC progression.","authors":"Lu Wang, Huijuan Liu, Guohui Chen, Qinglu Wu, Songrui Xu, Qichao Zhou, Yadong Zhao, Qiaorong Wang, Ting Yan, Xiaolong Cheng","doi":"10.1038/s41417-025-00889-6","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes mediate cell-to-cell communication by releasing miRNAs, mRNA, etc. However, there is little research about the effects on the donor cells after miRNAs are excreted out of cells through exosomes. Here, we found that miR-378a-3p was specifically enriched in exosomes and inhibited cell proliferation, migration, invasion, and colony formation in ESCC. In addition, miR-378a-3p was sorted into exosomes through TOM1L1 and extracted mainly out of ESCC cells. Overexpression of TOM1L1 led to tumor suppressor miR-378a-3p accumulation in exosomes rather than in donor cells, promoting ESCC progression. Moreover, miR-378a-3p targets DYRK1A that directly binds to NPM1 and the phosphorylation state of NPM1 at Ser125 to suppress tumor growth. Taken together, our findings demonstrate that TOM1L1-mediated the tumor suppressor miR-378a-3p into exosomes and excreted out of cells to promote tumor progression.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-025-00889-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Exosomes mediate cell-to-cell communication by releasing miRNAs, mRNA, etc. However, there is little research about the effects on the donor cells after miRNAs are excreted out of cells through exosomes. Here, we found that miR-378a-3p was specifically enriched in exosomes and inhibited cell proliferation, migration, invasion, and colony formation in ESCC. In addition, miR-378a-3p was sorted into exosomes through TOM1L1 and extracted mainly out of ESCC cells. Overexpression of TOM1L1 led to tumor suppressor miR-378a-3p accumulation in exosomes rather than in donor cells, promoting ESCC progression. Moreover, miR-378a-3p targets DYRK1A that directly binds to NPM1 and the phosphorylation state of NPM1 at Ser125 to suppress tumor growth. Taken together, our findings demonstrate that TOM1L1-mediated the tumor suppressor miR-378a-3p into exosomes and excreted out of cells to promote tumor progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信