Tengjiang Zhang, Yuan Zhang, Xuxiang Wang, Haitian Hu, Christopher G Lin, Yaru Xu, Hanqiu Zheng
{"title":"Genome-wide CRISPR activation screen identifies ARL11 as a sensitivity determinant of PARP inhibitor therapy.","authors":"Tengjiang Zhang, Yuan Zhang, Xuxiang Wang, Haitian Hu, Christopher G Lin, Yaru Xu, Hanqiu Zheng","doi":"10.1038/s41417-025-00893-w","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to poly-(ADP)-ribose polymerase inhibitors (PARPi) remains a significant challenge in clinical practice, leading to treatment failure in many patients. It is crucial to better understand the molecular mechanisms that underlie PARPi resistance. In this study, utilizing a genome-wide CRISPR activation screen with olaparib, we identified ARL11 as a potential modulator of PARPi treatment response in BRCA-wild-type MDA-MB-231 cells. Mechanistically, ARL11 interacts with STING to enhance innate immunity and forms positive feedback with type I interferon (IFN) induction, which induces ARL11 up-regulation and contributes to resistance to PARPi therapy. Additionally, we observed that ARL11 interacts with the RUVBL1 and RUVBL2 (RUVBL1/2) complex, the key DNA double-strand repair proteins, facilitating DNA homologous recombination (HR) repair and significantly reducing PARPi-induced DNA double-strand damages. Clinical sample analysis reveals that the expression levels of ARL11 and RUVBL1/2 are significantly elevated in breast cancer patients compared to healthy controls. Collectively, our findings suggested that ARL11 and RUVBL1/2 may be promising therapeutic targets to sensitize breast cancer cells to PARPi therapy.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-025-00893-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistance to poly-(ADP)-ribose polymerase inhibitors (PARPi) remains a significant challenge in clinical practice, leading to treatment failure in many patients. It is crucial to better understand the molecular mechanisms that underlie PARPi resistance. In this study, utilizing a genome-wide CRISPR activation screen with olaparib, we identified ARL11 as a potential modulator of PARPi treatment response in BRCA-wild-type MDA-MB-231 cells. Mechanistically, ARL11 interacts with STING to enhance innate immunity and forms positive feedback with type I interferon (IFN) induction, which induces ARL11 up-regulation and contributes to resistance to PARPi therapy. Additionally, we observed that ARL11 interacts with the RUVBL1 and RUVBL2 (RUVBL1/2) complex, the key DNA double-strand repair proteins, facilitating DNA homologous recombination (HR) repair and significantly reducing PARPi-induced DNA double-strand damages. Clinical sample analysis reveals that the expression levels of ARL11 and RUVBL1/2 are significantly elevated in breast cancer patients compared to healthy controls. Collectively, our findings suggested that ARL11 and RUVBL1/2 may be promising therapeutic targets to sensitize breast cancer cells to PARPi therapy.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.