Fabrication of Biomimetic Cell Culture Membranes Using Robust and Reusable Nickel Micropillar Molds.

IF 6.1 3区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
BioChip Journal Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI:10.1007/s13206-024-00179-7
Taiki Otomo, Hyunsoo Noh, Tatsuya Matsubara, Deok-Ho Kim, Masashi Ikeuchi, Kazuhiro Yoshida, Joon-Wan Kim
{"title":"Fabrication of Biomimetic Cell Culture Membranes Using Robust and Reusable Nickel Micropillar Molds.","authors":"Taiki Otomo, Hyunsoo Noh, Tatsuya Matsubara, Deok-Ho Kim, Masashi Ikeuchi, Kazuhiro Yoshida, Joon-Wan Kim","doi":"10.1007/s13206-024-00179-7","DOIUrl":null,"url":null,"abstract":"<p><p>In the practical application of organ-on-a-chip, mass production technology for flexible porous membranes is an essential element for mimicking the basement membrane of the body. Porous PDMS membrane is a promising material due to its high optical transparency, flexibility, and biocompatibility. However, the fabrication process is complex and costly. Even with soft lithography, a relatively straightforward method, there is a risk that the negative resist pillars used as molds peeling off from the substrate in mass production. In this study, we propose a novel mass production method for fabricating porous PDMS membranes using high-strength nickel (Ni) micropillars as molds by combining photolithography and electroforming technologies. The unibody structure of Ni micropillars ensures high reliability and provides a semi-permanent mold without degradation or detachment. We successfully fabricated two types of Ni micropillars and subsequently formed their corresponding porous PDMS membranes (<i>D</i> (diameter) = 8 μm, <i>P</i> (pitch) = 30 μm, and <i>D</i> = 10 μm, <i>P</i> = 20 μm). The porous PDMS membrane showed non-inferiority to the control group in terms of viability when cultured with human vascular endothelial cells. Furthermore, we showed that the porous PDMS membrane can be used to evaluate the vascular permeability of nanoparticles.</p>","PeriodicalId":8768,"journal":{"name":"BioChip Journal","volume":"19 1","pages":"91-98"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922972/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChip Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13206-024-00179-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In the practical application of organ-on-a-chip, mass production technology for flexible porous membranes is an essential element for mimicking the basement membrane of the body. Porous PDMS membrane is a promising material due to its high optical transparency, flexibility, and biocompatibility. However, the fabrication process is complex and costly. Even with soft lithography, a relatively straightforward method, there is a risk that the negative resist pillars used as molds peeling off from the substrate in mass production. In this study, we propose a novel mass production method for fabricating porous PDMS membranes using high-strength nickel (Ni) micropillars as molds by combining photolithography and electroforming technologies. The unibody structure of Ni micropillars ensures high reliability and provides a semi-permanent mold without degradation or detachment. We successfully fabricated two types of Ni micropillars and subsequently formed their corresponding porous PDMS membranes (D (diameter) = 8 μm, P (pitch) = 30 μm, and D = 10 μm, P = 20 μm). The porous PDMS membrane showed non-inferiority to the control group in terms of viability when cultured with human vascular endothelial cells. Furthermore, we showed that the porous PDMS membrane can be used to evaluate the vascular permeability of nanoparticles.

Abstract Image

Abstract Image

Abstract Image

利用可重复使用的镍微柱模具制备仿生细胞培养膜。
在器官芯片的实际应用中,柔性多孔膜的量产技术是模拟人体基底膜的重要组成部分。多孔PDMS膜具有较高的光学透明性、柔韧性和生物相容性,是一种很有前途的材料。然而,制造过程复杂且成本高昂。即使使用软光刻(一种相对简单的方法),在大规模生产中,用作模具的负阻光柱也有从基材上脱落的风险。在本研究中,我们提出了一种结合光刻和电铸技术,以高强度镍(Ni)微柱为模具制造多孔PDMS膜的新型批量生产方法。镍微柱的一体式结构确保了高可靠性,并提供了半永久性模具,不会降解或脱落。我们成功制备了两种类型的Ni微柱,并形成了相应的多孔PDMS膜(D(直径)= 8 μm, P(间距)= 30 μm, D = 10 μm, P = 20 μm)。当与人血管内皮细胞一起培养时,多孔PDMS膜的活力不低于对照组。此外,我们发现多孔PDMS膜可以用来评估纳米颗粒的血管通透性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioChip Journal
BioChip Journal 生物-生化研究方法
CiteScore
7.70
自引率
16.30%
发文量
47
审稿时长
6-12 weeks
期刊介绍: BioChip Journal publishes original research and reviews in all areas of the biochip technology in the following disciplines, including protein chip, DNA chip, cell chip, lab-on-a-chip, bio-MEMS, biosensor, micro/nano mechanics, microfluidics, high-throughput screening technology, medical science, genomics, proteomics, bioinformatics, medical diagnostics, environmental monitoring and micro/nanotechnology. The Journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信