Salman Khan, Sumaiya Noor, Hamid Hussain Awan, Shehryar Iqbal, Salman A AlQahtani, Naqqash Dilshad, Nijad Ahmad
{"title":"Deep-ProBind: binding protein prediction with transformer-based deep learning model.","authors":"Salman Khan, Sumaiya Noor, Hamid Hussain Awan, Shehryar Iqbal, Salman A AlQahtani, Naqqash Dilshad, Nijad Ahmad","doi":"10.1186/s12859-025-06101-8","DOIUrl":null,"url":null,"abstract":"<p><p>Binding proteins play a crucial role in biological systems by selectively interacting with specific molecules, such as DNA, RNA, or peptides, to regulate various cellular processes. Their ability to recognize and bind target molecules with high specificity makes them essential for signal transduction, transport, and enzymatic activity. Traditional experimental methods for identifying protein-binding peptides are costly and time-consuming. Current sequence-based approaches often struggle with accuracy, focusing too narrowly on proximal sequence features and ignoring structural data. This study presents Deep-ProBind, a powerful prediction model designed to classify protein binding sites by integrating sequence and structural information. The proposed model employs a transformer and evolutionary-based attention mechanism, i.e., Bidirectional Encoder Representations from Transformers (BERT) and Pseudo position specific scoring matrix -Discrete Wavelet Transform (PsePSSM -DWT) approach to encode peptides. The SHapley Additive exPlanations (SHAP) algorithm selects the optimal hybrid features, and a Deep Neural Network (DNN) is then used as the classification algorithm to predict protein-binding peptides. The performance of the proposed model was evaluated in comparison with traditional Machine Learning (ML) algorithms and existing models. Experimental results demonstrate that Deep-ProBind achieved 92.67% accuracy with tenfold cross-validation on benchmark datasets and 93.62% accuracy on independent samples. The Deep-ProBind outperforms existing models by 3.57% on training data and 1.52% on independent tests. These results demonstrate Deep-ProBind's reliability and effectiveness, making it a valuable tool for researchers and a potential resource in pharmacological studies, where peptide binding plays a critical role in therapeutic development.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"88"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06101-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Binding proteins play a crucial role in biological systems by selectively interacting with specific molecules, such as DNA, RNA, or peptides, to regulate various cellular processes. Their ability to recognize and bind target molecules with high specificity makes them essential for signal transduction, transport, and enzymatic activity. Traditional experimental methods for identifying protein-binding peptides are costly and time-consuming. Current sequence-based approaches often struggle with accuracy, focusing too narrowly on proximal sequence features and ignoring structural data. This study presents Deep-ProBind, a powerful prediction model designed to classify protein binding sites by integrating sequence and structural information. The proposed model employs a transformer and evolutionary-based attention mechanism, i.e., Bidirectional Encoder Representations from Transformers (BERT) and Pseudo position specific scoring matrix -Discrete Wavelet Transform (PsePSSM -DWT) approach to encode peptides. The SHapley Additive exPlanations (SHAP) algorithm selects the optimal hybrid features, and a Deep Neural Network (DNN) is then used as the classification algorithm to predict protein-binding peptides. The performance of the proposed model was evaluated in comparison with traditional Machine Learning (ML) algorithms and existing models. Experimental results demonstrate that Deep-ProBind achieved 92.67% accuracy with tenfold cross-validation on benchmark datasets and 93.62% accuracy on independent samples. The Deep-ProBind outperforms existing models by 3.57% on training data and 1.52% on independent tests. These results demonstrate Deep-ProBind's reliability and effectiveness, making it a valuable tool for researchers and a potential resource in pharmacological studies, where peptide binding plays a critical role in therapeutic development.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.