Xianpeng Li, Shuaiqi Yang, Lu Wang, Xiangmin Zhang, Ailong Zhang, Yunchao Wang, De-Li Shi, Hongyan Li
{"title":"Zinc Finger Protein Znf296 Is a Cardiac-Specific Splicing Regulator Required for Cardiomyocyte Formation.","authors":"Xianpeng Li, Shuaiqi Yang, Lu Wang, Xiangmin Zhang, Ailong Zhang, Yunchao Wang, De-Li Shi, Hongyan Li","doi":"10.1016/j.ajpath.2025.02.006","DOIUrl":null,"url":null,"abstract":"<p><p>Heart formation and function are tightly regulated at transcriptional and post-transcriptional levels. The dysfunction of cardiac cell-specific regulatory genes leads to various heart diseases. Heart failure is one of the most severe and complex cardiovascular diseases, which could be fatal if not treated promptly. However, the exact causes of heart failure are still unclear, especially at the level of single-gene causation. Here, an essential role is uncovered for the zinc finger protein Znf296 in heart development and cardiac contractile function. Specifically, znf296-deficient zebrafish embryos display heart defects characterized by decreased systolic and diastolic capacities of the ventricle and atrium. This is associated with reduced numbers and disrupted structural integrity of cardiomyocytes, including disorganized cytoskeleton and absence of sarcomeres. Mechanistically, the loss of Znf296 alters the alternative splicing of a subset of genes important for heart development and disease, such as mef2ca, sparc, tpm2, camk2g1, tnnt3b, and pdlim5b. Furthermore, it is demonstrated that Znf296 biochemically and functionally interacts with Myt1la in regulating cardiac-specific splicing and heart development. Importantly, it is shown that ZNF296 also regulates alternative splicing in human cardiomyocytes to maintain structural integrity. These results suggest that Znf296 plays a conserved role for the differentiation of cardiomyocytes and the proper function of the cardiovascular system.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2025.02.006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heart formation and function are tightly regulated at transcriptional and post-transcriptional levels. The dysfunction of cardiac cell-specific regulatory genes leads to various heart diseases. Heart failure is one of the most severe and complex cardiovascular diseases, which could be fatal if not treated promptly. However, the exact causes of heart failure are still unclear, especially at the level of single-gene causation. Here, an essential role is uncovered for the zinc finger protein Znf296 in heart development and cardiac contractile function. Specifically, znf296-deficient zebrafish embryos display heart defects characterized by decreased systolic and diastolic capacities of the ventricle and atrium. This is associated with reduced numbers and disrupted structural integrity of cardiomyocytes, including disorganized cytoskeleton and absence of sarcomeres. Mechanistically, the loss of Znf296 alters the alternative splicing of a subset of genes important for heart development and disease, such as mef2ca, sparc, tpm2, camk2g1, tnnt3b, and pdlim5b. Furthermore, it is demonstrated that Znf296 biochemically and functionally interacts with Myt1la in regulating cardiac-specific splicing and heart development. Importantly, it is shown that ZNF296 also regulates alternative splicing in human cardiomyocytes to maintain structural integrity. These results suggest that Znf296 plays a conserved role for the differentiation of cardiomyocytes and the proper function of the cardiovascular system.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.