Zinc Finger Protein Znf296 Is a Cardiac-Specific Splicing Regulator Required for Cardiomyocyte Formation.

IF 4.7 2区 医学 Q1 PATHOLOGY
Xianpeng Li, Shuaiqi Yang, Lu Wang, Xiangmin Zhang, Ailong Zhang, Yunchao Wang, De-Li Shi, Hongyan Li
{"title":"Zinc Finger Protein Znf296 Is a Cardiac-Specific Splicing Regulator Required for Cardiomyocyte Formation.","authors":"Xianpeng Li, Shuaiqi Yang, Lu Wang, Xiangmin Zhang, Ailong Zhang, Yunchao Wang, De-Li Shi, Hongyan Li","doi":"10.1016/j.ajpath.2025.02.006","DOIUrl":null,"url":null,"abstract":"<p><p>Heart formation and function are tightly regulated at transcriptional and post-transcriptional levels. The dysfunction of cardiac cell-specific regulatory genes leads to various heart diseases. Heart failure is one of the most severe and complex cardiovascular diseases, which could be fatal if not treated promptly. However, the exact causes of heart failure are still unclear, especially at the level of single-gene causation. Here, an essential role is uncovered for the zinc finger protein Znf296 in heart development and cardiac contractile function. Specifically, znf296-deficient zebrafish embryos display heart defects characterized by decreased systolic and diastolic capacities of the ventricle and atrium. This is associated with reduced numbers and disrupted structural integrity of cardiomyocytes, including disorganized cytoskeleton and absence of sarcomeres. Mechanistically, the loss of Znf296 alters the alternative splicing of a subset of genes important for heart development and disease, such as mef2ca, sparc, tpm2, camk2g1, tnnt3b, and pdlim5b. Furthermore, it is demonstrated that Znf296 biochemically and functionally interacts with Myt1la in regulating cardiac-specific splicing and heart development. Importantly, it is shown that ZNF296 also regulates alternative splicing in human cardiomyocytes to maintain structural integrity. These results suggest that Znf296 plays a conserved role for the differentiation of cardiomyocytes and the proper function of the cardiovascular system.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2025.02.006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heart formation and function are tightly regulated at transcriptional and post-transcriptional levels. The dysfunction of cardiac cell-specific regulatory genes leads to various heart diseases. Heart failure is one of the most severe and complex cardiovascular diseases, which could be fatal if not treated promptly. However, the exact causes of heart failure are still unclear, especially at the level of single-gene causation. Here, an essential role is uncovered for the zinc finger protein Znf296 in heart development and cardiac contractile function. Specifically, znf296-deficient zebrafish embryos display heart defects characterized by decreased systolic and diastolic capacities of the ventricle and atrium. This is associated with reduced numbers and disrupted structural integrity of cardiomyocytes, including disorganized cytoskeleton and absence of sarcomeres. Mechanistically, the loss of Znf296 alters the alternative splicing of a subset of genes important for heart development and disease, such as mef2ca, sparc, tpm2, camk2g1, tnnt3b, and pdlim5b. Furthermore, it is demonstrated that Znf296 biochemically and functionally interacts with Myt1la in regulating cardiac-specific splicing and heart development. Importantly, it is shown that ZNF296 also regulates alternative splicing in human cardiomyocytes to maintain structural integrity. These results suggest that Znf296 plays a conserved role for the differentiation of cardiomyocytes and the proper function of the cardiovascular system.

锌指蛋白 Znf296 是心肌细胞形成所需的心脏特异性剪接调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信