Intraamniotic vitamin D preserves lung development and prevents pulmonary hypertension in experimental bronchopulmonary dysplasia due to intraamniotic sFlt-1.
Michael W Cookson, Tania Gonzalez, Elisa M Bye, Greg Seedorf, Sarah Ellor, Bradford J Smith, James C Fleet, Erica W Mandell
{"title":"Intraamniotic vitamin D preserves lung development and prevents pulmonary hypertension in experimental bronchopulmonary dysplasia due to intraamniotic sFlt-1.","authors":"Michael W Cookson, Tania Gonzalez, Elisa M Bye, Greg Seedorf, Sarah Ellor, Bradford J Smith, James C Fleet, Erica W Mandell","doi":"10.1152/ajplung.00409.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Preterm infants born to mothers with preeclampsia, a disease of vascular dysfunction, are at increased risk for bronchopulmonary dysplasia (BPD). Endothelial cells are critical in both maintaining proper vascular function and coordinating lung development. Understanding the mechanisms contributing to BPD in the setting of preeclampsia and how preeclampsia impacts pulmonary endothelial cells (PECs) in the newborn lung are required to decrease the burden of BPD. Vitamin D has been shown to improve lung angiogenesis and lung development in inflammatory models of BPD, but its therapeutic potential in the setting of preeclampsia is unknown. We hypothesized that intraamniotic (IA) treatment with the biologically active form of vitamin D, 1,25 dihydroxyvitamin D [1,25(OH)<sub>2</sub>D], will preserve lung growth in an experimental model of BPD induced by antenatal exposure to soluble vascular endothelial growth factor receptor-1 [sFlt-1 (soluble fms-like tyrosine kinase 1)]. Fetal rats were exposed to saline (control), sFlt-1 alone, 1,25(OH)<sub>2</sub>D alone, or simultaneous sFlt-1 + 1,25(OH)<sub>2</sub>D via IA injection during the late canalicular stage of lung development and delivered 2 days later. IA treatment with 1,25(OH)<sub>2</sub>D in sFlt-1-exposed pups improved lung alveolar and vascular growth and function at 14 days of life. PECs orchestrate alveolar development, and we demonstrate that IA sFlt-1 exposure alone decreased in vitro growth and tube formation of PECs isolated from newborn pups and that PECs from pups coexposed to IA sFlt-1 and 1,25(OH)<sub>2</sub>D demonstrated increased growth and tube formation. We conclude that IA 1,25(OH)<sub>2</sub>D treatment improves distal lung development during sFlt-1 exposure through preservation of angiogenesis in the developing lung.<b>NEW & NOTEWORTHY</b> This study highlights that experimental BPD induced by intraamniotic sFlt-1 is associated with impaired growth in postnatal pulmonary endothelial cells. We demonstrate that 1,25(OH)<sub>2</sub>D may be a therapeutic option to improve lung development through enhancement of VEGF signaling and preservation of early pulmonary endothelial growth in the newborn rat lung.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L603-L615"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00409.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Preterm infants born to mothers with preeclampsia, a disease of vascular dysfunction, are at increased risk for bronchopulmonary dysplasia (BPD). Endothelial cells are critical in both maintaining proper vascular function and coordinating lung development. Understanding the mechanisms contributing to BPD in the setting of preeclampsia and how preeclampsia impacts pulmonary endothelial cells (PECs) in the newborn lung are required to decrease the burden of BPD. Vitamin D has been shown to improve lung angiogenesis and lung development in inflammatory models of BPD, but its therapeutic potential in the setting of preeclampsia is unknown. We hypothesized that intraamniotic (IA) treatment with the biologically active form of vitamin D, 1,25 dihydroxyvitamin D [1,25(OH)2D], will preserve lung growth in an experimental model of BPD induced by antenatal exposure to soluble vascular endothelial growth factor receptor-1 [sFlt-1 (soluble fms-like tyrosine kinase 1)]. Fetal rats were exposed to saline (control), sFlt-1 alone, 1,25(OH)2D alone, or simultaneous sFlt-1 + 1,25(OH)2D via IA injection during the late canalicular stage of lung development and delivered 2 days later. IA treatment with 1,25(OH)2D in sFlt-1-exposed pups improved lung alveolar and vascular growth and function at 14 days of life. PECs orchestrate alveolar development, and we demonstrate that IA sFlt-1 exposure alone decreased in vitro growth and tube formation of PECs isolated from newborn pups and that PECs from pups coexposed to IA sFlt-1 and 1,25(OH)2D demonstrated increased growth and tube formation. We conclude that IA 1,25(OH)2D treatment improves distal lung development during sFlt-1 exposure through preservation of angiogenesis in the developing lung.NEW & NOTEWORTHY This study highlights that experimental BPD induced by intraamniotic sFlt-1 is associated with impaired growth in postnatal pulmonary endothelial cells. We demonstrate that 1,25(OH)2D may be a therapeutic option to improve lung development through enhancement of VEGF signaling and preservation of early pulmonary endothelial growth in the newborn rat lung.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.