{"title":"Restoration of the 3D structure of insect flight muscle from a rotationally averaged 2D X-ray diffraction pattern.","authors":"Hiroyuki Iwamoto","doi":"10.1107/S2059798325002190","DOIUrl":null,"url":null,"abstract":"<p><p>The contractile machinery of muscle, especially that of skeletal muscle, has a very regular array of contractile protein filaments, and gives rise to a complex and informative diffraction pattern when irradiated with X-rays. However, analyzing these diffraction patterns is often challenging because (i) only rotationally averaged diffraction patterns can be obtained, resulting in a substantial loss of information, and (ii) the contractile machinery contains two different sets of protein filaments (actin and myosin) with different helical symmetries. The reflections originating from them often overlap. These problems may be solved if the real-space 3D structure of the contractile machinery is directly calculated from the diffraction pattern. Here, we demonstrate that by using the conventional phase-retrieval algorithm (hybrid input-output), the real-space 3D structure of the contractile machinery can be effectively restored from a single rotationally averaged 2D diffraction pattern. In this calculation, we used an in silico model of insect flight muscle, which is known for its highly regular structure. We also extended this technique to an experimentally recorded muscle diffraction pattern.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"196-206"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798325002190","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The contractile machinery of muscle, especially that of skeletal muscle, has a very regular array of contractile protein filaments, and gives rise to a complex and informative diffraction pattern when irradiated with X-rays. However, analyzing these diffraction patterns is often challenging because (i) only rotationally averaged diffraction patterns can be obtained, resulting in a substantial loss of information, and (ii) the contractile machinery contains two different sets of protein filaments (actin and myosin) with different helical symmetries. The reflections originating from them often overlap. These problems may be solved if the real-space 3D structure of the contractile machinery is directly calculated from the diffraction pattern. Here, we demonstrate that by using the conventional phase-retrieval algorithm (hybrid input-output), the real-space 3D structure of the contractile machinery can be effectively restored from a single rotationally averaged 2D diffraction pattern. In this calculation, we used an in silico model of insect flight muscle, which is known for its highly regular structure. We also extended this technique to an experimentally recorded muscle diffraction pattern.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.