Célia Sanchez, Hadi El Radi, Nathan Gay, Johan Cailletaud, Kévin Grollier, Fabrice Thomas, Thierry Gonthiez
{"title":"Synthetic modeling: A cell-free approach for faster implementation of Raman spectroscopy in cell culture.","authors":"Célia Sanchez, Hadi El Radi, Nathan Gay, Johan Cailletaud, Kévin Grollier, Fabrice Thomas, Thierry Gonthiez","doi":"10.1002/btpr.70018","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring cell culture is crucial for gaining a deeper understanding of processes and ensuring the production of safe and high-quality products. The capability to measure in real time several parameters of interest can be achieved with Raman spectroscopy. However, before using Raman spectroscopy to monitor a specific process, a calibration phase is required to develop chemometric models that correlate Raman spectra with the target parameters. It is mandatory to conduct this phase with multiple batches to build robust models that account for biological variability. This model building phase can be time-consuming and require a lot of resources. The industry is actively seeking solutions to simplify and expedite this step without compromising accuracy. Moreover, the current approach has limitations regarding changing cell culture media, celllines, or process scale. The novel synthetic model approach provides a significant gain of time and resources for the calibration phase, which is reduced to just a few days. The methodology involves using cell-free samples of cell culture media that are spiked with various concentrations of target compounds. The results indicate that the innovative approach enables accurate measurement for glucose and lactate parameters in real process conditions comparable to a standard modeling methodology.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70018"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring cell culture is crucial for gaining a deeper understanding of processes and ensuring the production of safe and high-quality products. The capability to measure in real time several parameters of interest can be achieved with Raman spectroscopy. However, before using Raman spectroscopy to monitor a specific process, a calibration phase is required to develop chemometric models that correlate Raman spectra with the target parameters. It is mandatory to conduct this phase with multiple batches to build robust models that account for biological variability. This model building phase can be time-consuming and require a lot of resources. The industry is actively seeking solutions to simplify and expedite this step without compromising accuracy. Moreover, the current approach has limitations regarding changing cell culture media, celllines, or process scale. The novel synthetic model approach provides a significant gain of time and resources for the calibration phase, which is reduced to just a few days. The methodology involves using cell-free samples of cell culture media that are spiked with various concentrations of target compounds. The results indicate that the innovative approach enables accurate measurement for glucose and lactate parameters in real process conditions comparable to a standard modeling methodology.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.