How Does an Anti-Cancer Peptide Passively Permeate the Plasma Membrane of a Cancer Cell and Not a Normal Cell?

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-04-03 Epub Date: 2025-03-24 DOI:10.1021/acs.jpcb.5c00680
Alfredo E Cardenas, Ehud Neumann, Yang Sung Sohn, Taylor Hays, Rachel Nechushtai, Lauren J Webb, Ron Elber
{"title":"How Does an Anti-Cancer Peptide Passively Permeate the Plasma Membrane of a Cancer Cell and Not a Normal Cell?","authors":"Alfredo E Cardenas, Ehud Neumann, Yang Sung Sohn, Taylor Hays, Rachel Nechushtai, Lauren J Webb, Ron Elber","doi":"10.1021/acs.jpcb.5c00680","DOIUrl":null,"url":null,"abstract":"<p><p>Passive and targeted delivery of peptides to cells and organelles is a fundamental biophysical process controlled by membranes surrounding biological compartments. Embedded proteins, phospholipid composition, and solution conditions contribute to targeted transport. An anticancer peptide, NAF-1<sup>44-67</sup>, permeates to cancer cells but not to normal cells. The mechanism of this selectivity is of significant interest. However, the complexity of biomembranes makes pinpointing passive targeting mechanisms difficult. To dissect contributions to selective transport by membrane components, we constructed simplified phospholipid vesicles as plasma membrane (PM) models of cancer and normal cells and investigated NAF-1<sup>44-67</sup> permeation computationally and experimentally. We use atomically detailed simulations with enhanced sampling techniques to study kinetics and thermodynamics of the interaction. Experimentally, we study the interaction of the peptide with large and giant unilamellar vesicles. The large vesicles were investigated with fluorescence spectroscopy and the giant vesicles with confocal microscopy. Peptide permeation across a model of cancer PM is more efficient than permeation across a PM model of normal cells. The investigations agree on the mechanism of selectivity, which consists of three steps: (i) early electrostatic attraction of the peptide to the negatively charged membrane, (ii) the penetration of the peptide hydrophobic N-terminal segment into the lipid bilayer, and (iii) exploiting short-range electrostatic forces to create a defect in the membrane and complete the permeation process. The first step is kinetically less efficient in a normal membrane with fewer negatively charged phospholipids. The model of a normal membrane is less receptive to defect creation in the third step.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3408-3419"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c00680","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Passive and targeted delivery of peptides to cells and organelles is a fundamental biophysical process controlled by membranes surrounding biological compartments. Embedded proteins, phospholipid composition, and solution conditions contribute to targeted transport. An anticancer peptide, NAF-144-67, permeates to cancer cells but not to normal cells. The mechanism of this selectivity is of significant interest. However, the complexity of biomembranes makes pinpointing passive targeting mechanisms difficult. To dissect contributions to selective transport by membrane components, we constructed simplified phospholipid vesicles as plasma membrane (PM) models of cancer and normal cells and investigated NAF-144-67 permeation computationally and experimentally. We use atomically detailed simulations with enhanced sampling techniques to study kinetics and thermodynamics of the interaction. Experimentally, we study the interaction of the peptide with large and giant unilamellar vesicles. The large vesicles were investigated with fluorescence spectroscopy and the giant vesicles with confocal microscopy. Peptide permeation across a model of cancer PM is more efficient than permeation across a PM model of normal cells. The investigations agree on the mechanism of selectivity, which consists of three steps: (i) early electrostatic attraction of the peptide to the negatively charged membrane, (ii) the penetration of the peptide hydrophobic N-terminal segment into the lipid bilayer, and (iii) exploiting short-range electrostatic forces to create a defect in the membrane and complete the permeation process. The first step is kinetically less efficient in a normal membrane with fewer negatively charged phospholipids. The model of a normal membrane is less receptive to defect creation in the third step.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信