Aditi Mahanty, Amit Akhuli, Chinmayee Patra, Joyoti Ghosh, Moloy Sarkar
{"title":"Rapid and Sensitive Glutathione Detection Using Water-Soluble Fluorescent Bimetallic Nanoparticles","authors":"Aditi Mahanty, Amit Akhuli, Chinmayee Patra, Joyoti Ghosh, Moloy Sarkar","doi":"10.1002/cnma.202400642","DOIUrl":null,"url":null,"abstract":"<p>This work aims to design and develop a simple but effective strategy for the selective and sensitive detection of glutathione (GSH) in aqueous medium by exploiting fluorescent bimetallic nanoparticles. To achieve this, water-soluble, fluorescent silver-capped gold nanoparticles (F−AgAu) has been synthesized and characterized through conventional methods. The sensing behaviour of the F−AgAu for several analytes of interest has been investigated by employing steady state and time-resolved spectroscopic techniques. Signaling strategy has been conceptualized by exploiting both “turn-on” and “turn-off” condition of the fluorescent nanoparticles against specific analytes in sequential manner. The method is based on the F−AgAu/Hg<sup>2+</sup> system, where the initial fluorescence from F−AgAu is quenched (“turn-off”) by Hg<sup>2+</sup>. Time-resolved fluorescence studies have revealed that a photoinduced electron transfer (PET) process from nanoparticle to Hg<sup>2+</sup> is primarily responsible for the fluorescence quenching behavior. Interestingly, in the presence of GSH, the fluorescence of the nanoparticle is found to be recovered (“on” state). The fluorescence “on” state of the nanoparticles is attributed to the competitive affinity of Hg<sup>2+</sup> for thesurface ligand, GSH. More interestingly, it has been demonstrated that the present signaling strategy is quite effective in detecting GSH in various fruits and food samples at low concentration levels.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400642","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims to design and develop a simple but effective strategy for the selective and sensitive detection of glutathione (GSH) in aqueous medium by exploiting fluorescent bimetallic nanoparticles. To achieve this, water-soluble, fluorescent silver-capped gold nanoparticles (F−AgAu) has been synthesized and characterized through conventional methods. The sensing behaviour of the F−AgAu for several analytes of interest has been investigated by employing steady state and time-resolved spectroscopic techniques. Signaling strategy has been conceptualized by exploiting both “turn-on” and “turn-off” condition of the fluorescent nanoparticles against specific analytes in sequential manner. The method is based on the F−AgAu/Hg2+ system, where the initial fluorescence from F−AgAu is quenched (“turn-off”) by Hg2+. Time-resolved fluorescence studies have revealed that a photoinduced electron transfer (PET) process from nanoparticle to Hg2+ is primarily responsible for the fluorescence quenching behavior. Interestingly, in the presence of GSH, the fluorescence of the nanoparticle is found to be recovered (“on” state). The fluorescence “on” state of the nanoparticles is attributed to the competitive affinity of Hg2+ for thesurface ligand, GSH. More interestingly, it has been demonstrated that the present signaling strategy is quite effective in detecting GSH in various fruits and food samples at low concentration levels.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.