Polyimide passivation-enabled high-work function graphene transparent electrode for organic light-emitting diodes with enhanced reliability

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-11-27 DOI:10.1002/inf2.12638
Rui Liu, Yu Liu, Dingdong Zhang, Jinhong Du, Xu Han, Shuangdeng Yuan, Wencai Ren
{"title":"Polyimide passivation-enabled high-work function graphene transparent electrode for organic light-emitting diodes with enhanced reliability","authors":"Rui Liu,&nbsp;Yu Liu,&nbsp;Dingdong Zhang,&nbsp;Jinhong Du,&nbsp;Xu Han,&nbsp;Shuangdeng Yuan,&nbsp;Wencai Ren","doi":"10.1002/inf2.12638","DOIUrl":null,"url":null,"abstract":"<p>Chemical vapor deposition (CVD)-gown graphene has tremendous potential as a transparent electrode for the next generation of flexible optoelectronics such as organic light-emitting diodes (OLEDs). A semiconductor coating is critical to improve the work function but usually makes graphene rougher and more conductive, which increases leakage, and then significantly restrict device efficiency improvement and worsens reliability. Here an insulating polyimide bearing carbazole-substituted triphenylamine units and bis(trifluoromethyl)phenyl groups (CzTPA PI/2CF<sub>3</sub>) with high thermal stability is synthesized to passivate graphene. The similar surface free energy allows the uniform coating of CzTPA PI/2CF<sub>3</sub>/N-methylpyrrolidone on graphene. Despite of a slight decrease in conductivity, CzTPA PI/2CF<sub>3</sub> passivation enables a substantial reduction in surface roughness and improvement in work function. By using such CzTPA PI/2CF<sub>3</sub>-passivated graphene as anode, a flexible green OLED is demonstrated with a maximum current, power, and external quantum efficiencies of 88.4 cd A<sup>−1</sup>, 115.7 lm W<sup>−1</sup>, and 24.8%, respectively, which are among the best of the reported results. Moreover, the CzTPA PI/2CF<sub>3</sub> passivation enhances the device reliability with extending half-life and reducing dispersion coefficient of efficiency. The study promotes the practical use of graphene transparent electrodes for flexible optoelectronics.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 3","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12638","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12638","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical vapor deposition (CVD)-gown graphene has tremendous potential as a transparent electrode for the next generation of flexible optoelectronics such as organic light-emitting diodes (OLEDs). A semiconductor coating is critical to improve the work function but usually makes graphene rougher and more conductive, which increases leakage, and then significantly restrict device efficiency improvement and worsens reliability. Here an insulating polyimide bearing carbazole-substituted triphenylamine units and bis(trifluoromethyl)phenyl groups (CzTPA PI/2CF3) with high thermal stability is synthesized to passivate graphene. The similar surface free energy allows the uniform coating of CzTPA PI/2CF3/N-methylpyrrolidone on graphene. Despite of a slight decrease in conductivity, CzTPA PI/2CF3 passivation enables a substantial reduction in surface roughness and improvement in work function. By using such CzTPA PI/2CF3-passivated graphene as anode, a flexible green OLED is demonstrated with a maximum current, power, and external quantum efficiencies of 88.4 cd A−1, 115.7 lm W−1, and 24.8%, respectively, which are among the best of the reported results. Moreover, the CzTPA PI/2CF3 passivation enhances the device reliability with extending half-life and reducing dispersion coefficient of efficiency. The study promotes the practical use of graphene transparent electrodes for flexible optoelectronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信