{"title":"Molecular Dynamics-Assisted Interaction Between HABT and PI3K Enzyme: Exploring Metastable States for Promising Cancer Diagnosis Applications","authors":"Rodrigo Mancini Santos, Teodorico Castro Ramalho","doi":"10.1002/jcc.70080","DOIUrl":null,"url":null,"abstract":"<p>Local nonequilibrium approach has been used for many purposes when dealing with biological systems. Not only for unraveling important features of cancer development, a disease that affects the lives of many people worldwide, but also to understand drug–target interactions in a more real scenario, which can help to combat this disease. Therefore, aiming to contribute to new strategies against cancer, the present work used this approach to investigate the spectroscopy of 2-(2′-hydroxy-4′-aminophenyl)benzothiazole (HABT) when interacting with the PI3K enzyme, a widely associated target for the mentioned illness. The study consisted of evaluating the Excited State Intramolecular Proton Transfer (ESIPT) performance of HABT, in spectroscopic terms, when interacting with the PI3K enzyme in a local nonequilibrium regime. This scenario could be considered by investigating the metastable states of HABT in this system. From this, it was possible to observe that the ESIPT performance of HABT considerably differs when comparing the solution and protein environments, where 63% have appropriate geometry in the protein environment, against 97% in the aqueous environment. Thus, from an entirely theoretical methodology, the present work provides insights when modeling biological systems and contributes significantly to a better comprehension of promising probes for cancer diagnosis.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70080","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Local nonequilibrium approach has been used for many purposes when dealing with biological systems. Not only for unraveling important features of cancer development, a disease that affects the lives of many people worldwide, but also to understand drug–target interactions in a more real scenario, which can help to combat this disease. Therefore, aiming to contribute to new strategies against cancer, the present work used this approach to investigate the spectroscopy of 2-(2′-hydroxy-4′-aminophenyl)benzothiazole (HABT) when interacting with the PI3K enzyme, a widely associated target for the mentioned illness. The study consisted of evaluating the Excited State Intramolecular Proton Transfer (ESIPT) performance of HABT, in spectroscopic terms, when interacting with the PI3K enzyme in a local nonequilibrium regime. This scenario could be considered by investigating the metastable states of HABT in this system. From this, it was possible to observe that the ESIPT performance of HABT considerably differs when comparing the solution and protein environments, where 63% have appropriate geometry in the protein environment, against 97% in the aqueous environment. Thus, from an entirely theoretical methodology, the present work provides insights when modeling biological systems and contributes significantly to a better comprehension of promising probes for cancer diagnosis.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.