{"title":"Causal Network Representations in Factor Investing","authors":"Clint Howard, Harald Lohre, Sebastiaan Mudde","doi":"10.1002/isaf.70001","DOIUrl":null,"url":null,"abstract":"<p>This paper explores the application of causal discovery algorithms to factor investing, addressing recent criticisms of correlation-based models. We create novel causal network representations of the S&P 500 universe and apply them to three investment scenarios. Our findings suggest that causal approaches can complement traditional methods in areas such as stock peer group identification, factor construction, and market timing. While causal networks offer new insights and sometimes outperform correlation-based methods in terms of risk-adjusted returns, they do not consistently surpass traditional approaches. The causal method though shows promise in identifying unique market relationships and potential hedging opportunities. However, its practical implementation presents challenges due to computational complexity and interpretation difficulties. Our study demonstrates the potential value of causal discovery in factor investing, while also identifying areas for further research and refinement.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the application of causal discovery algorithms to factor investing, addressing recent criticisms of correlation-based models. We create novel causal network representations of the S&P 500 universe and apply them to three investment scenarios. Our findings suggest that causal approaches can complement traditional methods in areas such as stock peer group identification, factor construction, and market timing. While causal networks offer new insights and sometimes outperform correlation-based methods in terms of risk-adjusted returns, they do not consistently surpass traditional approaches. The causal method though shows promise in identifying unique market relationships and potential hedging opportunities. However, its practical implementation presents challenges due to computational complexity and interpretation difficulties. Our study demonstrates the potential value of causal discovery in factor investing, while also identifying areas for further research and refinement.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.