Yubing Qian, Xiang Li, Zhe Li, Weiluo Ren, Ji Chen
{"title":"Deep Learning Quantum Monte Carlo for Solids","authors":"Yubing Qian, Xiang Li, Zhe Li, Weiluo Ren, Ji Chen","doi":"10.1002/wcms.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Deep learning has deeply changed the paradigms of many research fields. At the heart of chemical and physical sciences is the accurate ab initio calculation of many-body wavefunctions, which has become one of the most notable examples to demonstrate the power of deep learning in science. In particular, the introduction of deep learning into quantum Monte Carlo (QMC) has significantly advanced the frontier of ab initio calculation, offering a universal tool to solve the electronic structure of materials and molecules. Deep learning QMC architectures were initially designed and tested on small molecules, focusing on comparisons with other state-of-the-art ab initio methods. Methodological developments, including extensions to real solids and periodic models, have been rapidly progressing, and reported applications are fast expanding. This review covers the theoretical foundation of deep learning QMC for solids, the neural network wavefunction ansatz, and various other methodological developments. Applications on computing energy, electron density, electric polarization, force, and stress of real solids are also reviewed. The methods have also been extended to other periodic systems and finite temperature calculations. The review highlights the potential and existing challenges of deep learning QMC in materials chemistry and condensed matter physics.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 2","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70015","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has deeply changed the paradigms of many research fields. At the heart of chemical and physical sciences is the accurate ab initio calculation of many-body wavefunctions, which has become one of the most notable examples to demonstrate the power of deep learning in science. In particular, the introduction of deep learning into quantum Monte Carlo (QMC) has significantly advanced the frontier of ab initio calculation, offering a universal tool to solve the electronic structure of materials and molecules. Deep learning QMC architectures were initially designed and tested on small molecules, focusing on comparisons with other state-of-the-art ab initio methods. Methodological developments, including extensions to real solids and periodic models, have been rapidly progressing, and reported applications are fast expanding. This review covers the theoretical foundation of deep learning QMC for solids, the neural network wavefunction ansatz, and various other methodological developments. Applications on computing energy, electron density, electric polarization, force, and stress of real solids are also reviewed. The methods have also been extended to other periodic systems and finite temperature calculations. The review highlights the potential and existing challenges of deep learning QMC in materials chemistry and condensed matter physics.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.