Guan-Hua Dun, Yuan-Yuan Li, Hai-Nan Zhang, Fan Wu, Xi-Chao Tan, Ken Qin, Yi-Chu He, Ze-Shu Wang, Yu-Hao Wang, Tian Lu, Shi-Wei Tian, Dan Xie, Jia-Li Peng, Xiang-Shun Geng, Xiao-Tong Zhao, Jia-He Zhang, Yu-Han Zhao, Xiaoyu Wu, Ning-Qin Deng, Zheng-Qiang Zhu, Yan Li, Xian-Zhu Liu, Xing Wu, Weida Hu, Peng Zhou, Yang Chai, Mario Lanza, He Tian, Yi Yang, Tian-Ling Ren
{"title":"All-in-one perovskite memristor with tunable photoresponsivity","authors":"Guan-Hua Dun, Yuan-Yuan Li, Hai-Nan Zhang, Fan Wu, Xi-Chao Tan, Ken Qin, Yi-Chu He, Ze-Shu Wang, Yu-Hao Wang, Tian Lu, Shi-Wei Tian, Dan Xie, Jia-Li Peng, Xiang-Shun Geng, Xiao-Tong Zhao, Jia-He Zhang, Yu-Han Zhao, Xiaoyu Wu, Ning-Qin Deng, Zheng-Qiang Zhu, Yan Li, Xian-Zhu Liu, Xing Wu, Weida Hu, Peng Zhou, Yang Chai, Mario Lanza, He Tian, Yi Yang, Tian-Ling Ren","doi":"10.1002/inf2.12619","DOIUrl":null,"url":null,"abstract":"<p>Photoelectric memristors have shown great potential for future machine visions, via integrating sensing, memory, and computing (namely “all-in-one”) functions in a single device. However, their hard-to-tune photoresponse behavior necessitates extra function modules for signal encoding and modality conversion, impeding such integration. Here, we report an all-in-one memristor with Cs<sub>2</sub>AgBiBr<sub>6</sub> perovskite, where the Br vacancy doping-endowed tunable energy band enables tunable photoresponsivity (TPR) behavior. As a result, the memristor showed a large tunable ratio of 35.9 dB, while its photoresponsivity presented a maximum of 2.7 × 10<sup>3</sup> mA W<sup>−1</sup> and a long-term memory behavior with over 10<sup>4</sup> s, making it suitable for realizing all-in-one processing tasks. By mapping the algorithm parameters onto the photoresponsivity, we successfully performed both recognition and processing tasks based on the TPR memristor array. Remarkably, compared with conventional complementary metal–oxide–semiconductor counterparts, our demonstrations provided comparable performance but had ~133-fold and ~299-fold reductions in energy consumption, respectively. Our work could facilitate the development of all-in-one smart devices for next-generation machine visions.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 3","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12619","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12619","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectric memristors have shown great potential for future machine visions, via integrating sensing, memory, and computing (namely “all-in-one”) functions in a single device. However, their hard-to-tune photoresponse behavior necessitates extra function modules for signal encoding and modality conversion, impeding such integration. Here, we report an all-in-one memristor with Cs2AgBiBr6 perovskite, where the Br vacancy doping-endowed tunable energy band enables tunable photoresponsivity (TPR) behavior. As a result, the memristor showed a large tunable ratio of 35.9 dB, while its photoresponsivity presented a maximum of 2.7 × 103 mA W−1 and a long-term memory behavior with over 104 s, making it suitable for realizing all-in-one processing tasks. By mapping the algorithm parameters onto the photoresponsivity, we successfully performed both recognition and processing tasks based on the TPR memristor array. Remarkably, compared with conventional complementary metal–oxide–semiconductor counterparts, our demonstrations provided comparable performance but had ~133-fold and ~299-fold reductions in energy consumption, respectively. Our work could facilitate the development of all-in-one smart devices for next-generation machine visions.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.