AIoT based sentiment analysis via multi-scale context perception to enhance linguistic teaching

IF 0.9 Q4 TELECOMMUNICATIONS
Haiyan Li, Guihua Wu
{"title":"AIoT based sentiment analysis via multi-scale context perception to enhance linguistic teaching","authors":"Haiyan Li,&nbsp;Guihua Wu","doi":"10.1002/itl2.570","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of the Internet of Things (IoT) and artificial intelligence technology, real-time text sentiment analysis plays an important role in online education. Due to the limited resources of clients, existing deep networks cannot be directly deployed in the edge node. In addition, deep convolutional networks cannot fully utilize contextual information. In order to resolve these issues, this paper proposes a multi-scale context-aware text sentiment analysis system based on cloud computing, in which a bidirectional long short-term memory network (BiLSTM) model is deployed in the cloud server. The BiLSTM model can fully explore the contextual feature information of the text stream in online education. The real-time text data are collected through terminal nodes, such as pad or computer, to send the cloud server. The experiments utilize three public text datasets to simulate the input of terminal nodes. The results show that the proposed system shows better accuracy than previous models and can return the emotional status in time.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of the Internet of Things (IoT) and artificial intelligence technology, real-time text sentiment analysis plays an important role in online education. Due to the limited resources of clients, existing deep networks cannot be directly deployed in the edge node. In addition, deep convolutional networks cannot fully utilize contextual information. In order to resolve these issues, this paper proposes a multi-scale context-aware text sentiment analysis system based on cloud computing, in which a bidirectional long short-term memory network (BiLSTM) model is deployed in the cloud server. The BiLSTM model can fully explore the contextual feature information of the text stream in online education. The real-time text data are collected through terminal nodes, such as pad or computer, to send the cloud server. The experiments utilize three public text datasets to simulate the input of terminal nodes. The results show that the proposed system shows better accuracy than previous models and can return the emotional status in time.

通过多尺度情境感知进行基于人工智能的情感分析,提高语言教学效果
随着物联网(IoT)和人工智能技术的快速发展,实时文本情感分析在在线教育中发挥着重要作用。由于客户端资源有限,现有深度网络无法直接部署在边缘节点。此外,深度卷积网络不能充分利用上下文信息。为了解决这些问题,本文提出了一种基于云计算的多尺度上下文感知文本情感分析系统,该系统在云服务器上部署了双向长短期记忆网络(BiLSTM)模型。BiLSTM模型可以充分挖掘在线教育中文本流的上下文特征信息。实时文本数据通过pad或计算机等终端节点采集,发送至云服务器。实验利用三个公共文本数据集来模拟终端节点的输入。结果表明,该系统比以往的模型具有更高的准确率,能够及时返回情绪状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信