Innovative Synthesis and Characterization of Nano Hydroxyapatite: A Potential Adsorbent for Methyl Violet 6B Removal from Aqueous Solutions

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-01-23 DOI:10.1002/cnma.202400582
Mustafa Burak Telli, Tugkan Kutlu, Seda Karayünlü Bozbaş, Aybuke Şirin, Tuba Ünügül
{"title":"Innovative Synthesis and Characterization of Nano Hydroxyapatite: A Potential Adsorbent for Methyl Violet 6B Removal from Aqueous Solutions","authors":"Mustafa Burak Telli,&nbsp;Tugkan Kutlu,&nbsp;Seda Karayünlü Bozbaş,&nbsp;Aybuke Şirin,&nbsp;Tuba Ünügül","doi":"10.1002/cnma.202400582","DOIUrl":null,"url":null,"abstract":"<p>In this study, the use of nano Hydroxyapatite (HAp) adsorbent as an adsorbent for the removal of methyl violet 6B (MV 6B) dye from aqueous solution was investigated. Nano adsorbent characterization was carried out by X-Ray Diffractometer (XRD), scanning electron microscopy (SEM), spot energy dispersive spectroscopy (EDS) analyses. The dye removal study was carried out using the classical batch adsorption process. In addition, isotherm, kinetic and thermodynamic adsorption studies were carried out for methyl violet 6B. In adsorption studies, the effects of initial dye concentration (10–40 mg/L), solution pH (2-8), adsorbent dosage (0.5–2.5 mg) and contact time (15–90 min.) on dye removal were investigated. At dye concentration was 10 mg/L, adsorbent dosage was 1 mg, solution pH was 6, contact time was 30 min and ambient temperature 25 °C, the highest MV 6B removal was 95.86 % and 1200 mg/g adsorption capacity was obtained. As a result of adsorption isotherm and kinetic studies, it was observed that the adsorption values obtained from the models were compatible with Langmuir isotherm model and pseudo-second order kinetic model. According to the thermodynamic data obtained, it was determined that the adsorption process was spontaneous and exothermic.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202400582","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400582","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the use of nano Hydroxyapatite (HAp) adsorbent as an adsorbent for the removal of methyl violet 6B (MV 6B) dye from aqueous solution was investigated. Nano adsorbent characterization was carried out by X-Ray Diffractometer (XRD), scanning electron microscopy (SEM), spot energy dispersive spectroscopy (EDS) analyses. The dye removal study was carried out using the classical batch adsorption process. In addition, isotherm, kinetic and thermodynamic adsorption studies were carried out for methyl violet 6B. In adsorption studies, the effects of initial dye concentration (10–40 mg/L), solution pH (2-8), adsorbent dosage (0.5–2.5 mg) and contact time (15–90 min.) on dye removal were investigated. At dye concentration was 10 mg/L, adsorbent dosage was 1 mg, solution pH was 6, contact time was 30 min and ambient temperature 25 °C, the highest MV 6B removal was 95.86 % and 1200 mg/g adsorption capacity was obtained. As a result of adsorption isotherm and kinetic studies, it was observed that the adsorption values obtained from the models were compatible with Langmuir isotherm model and pseudo-second order kinetic model. According to the thermodynamic data obtained, it was determined that the adsorption process was spontaneous and exothermic.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信