Design, Synthesis and Anti-Influenza Virus Activity of 4-Tert-Butyl-N-(3-Oxo-1-Thia-4-Azaspiro[4.5]Dec-4-yl)Benzamide Derivatives That Target Hemagglutinin-Mediated Fusion
Gözde Çınar, Zeynep Alikadıoğlu, Özge Soylu-Eter, Lieve Naesens, Gökçe Cihan-Üstündağ
{"title":"Design, Synthesis and Anti-Influenza Virus Activity of 4-Tert-Butyl-N-(3-Oxo-1-Thia-4-Azaspiro[4.5]Dec-4-yl)Benzamide Derivatives That Target Hemagglutinin-Mediated Fusion","authors":"Gözde Çınar, Zeynep Alikadıoğlu, Özge Soylu-Eter, Lieve Naesens, Gökçe Cihan-Üstündağ","doi":"10.1002/ddr.70080","DOIUrl":null,"url":null,"abstract":"<p>Hemagglutinin (HA) is a viral glycoprotein that mediates influenza virus entry into the host cell and is considered a relevant viral target. We here report the identification of a class of 4-<i>tert</i>-butylphenyl-substituted spirothiazolidinones as HA-mediated fusion inhibitors with specific activity against influenza A/H3N2 virus. The novel spirocyclic compounds were achieved by using one-pot cyclocondensation method and the chemical structures were characterized by IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and elemental analysis. Compound <b>2c</b>, bearing methyl substitutions at positions 2- and 8- of the spiro ring displayed an EC<sub>50</sub> value against influenza A/H3N2 virus of 1.3 μM and an antiviral selectivity index of 30. The fusion-inhibiting effect of compound <b>2c</b> was revealed in the polykaryon assay which is based on cell-cell fusion when influenza virus H3 HA-transfected cells are exposed to low pH. Computer-aided docking was performed to predict the possible binding pocket in the H3 HA trimer. Resistance data and <i>in silico</i> studies indicated that compound <b>2c</b> has an overlapping binding pocket in the stem region of H3 HA with the known fusion inhibitors TBHQ and arbidol.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ddr.70080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70080","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hemagglutinin (HA) is a viral glycoprotein that mediates influenza virus entry into the host cell and is considered a relevant viral target. We here report the identification of a class of 4-tert-butylphenyl-substituted spirothiazolidinones as HA-mediated fusion inhibitors with specific activity against influenza A/H3N2 virus. The novel spirocyclic compounds were achieved by using one-pot cyclocondensation method and the chemical structures were characterized by IR, 1H NMR, 13C NMR, and elemental analysis. Compound 2c, bearing methyl substitutions at positions 2- and 8- of the spiro ring displayed an EC50 value against influenza A/H3N2 virus of 1.3 μM and an antiviral selectivity index of 30. The fusion-inhibiting effect of compound 2c was revealed in the polykaryon assay which is based on cell-cell fusion when influenza virus H3 HA-transfected cells are exposed to low pH. Computer-aided docking was performed to predict the possible binding pocket in the H3 HA trimer. Resistance data and in silico studies indicated that compound 2c has an overlapping binding pocket in the stem region of H3 HA with the known fusion inhibitors TBHQ and arbidol.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.