Enhancing Molecular Dynamics Simulations of Electrical Double Layers: From Simplified to Realistic Models

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liang Zeng, Xiangyu Ji, Jinkai Zhang, Nan Huang, Zhenxiang Wang, Ding Yu, Jiaxing Peng, Guang Feng
{"title":"Enhancing Molecular Dynamics Simulations of Electrical Double Layers: From Simplified to Realistic Models","authors":"Liang Zeng,&nbsp;Xiangyu Ji,&nbsp;Jinkai Zhang,&nbsp;Nan Huang,&nbsp;Zhenxiang Wang,&nbsp;Ding Yu,&nbsp;Jiaxing Peng,&nbsp;Guang Feng","doi":"10.1002/wcms.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Molecular dynamics (MD) simulations have become a powerful tool for studying double-layer systems, offering atomistic insights into their equilibrium properties and dynamic behaviors. These simulations have significantly advanced the understanding of key electrochemical mechanisms and the design of electrochemical devices. However, challenges remain in aligning simulations with the complexities of realistic applications. In this perspectiv, we highlight critical areas for enhancing the realism of MD simulations, including refining methods for representing electrode polarization, improving electrode and electrolyte models to incorporate structural and compositional complexities, and simulating charging and discharging processes under realistic conditions while considering associated thermal behaviors. We also stress the importance of scaling simulation results to experimental dimensions through multiscale modeling and dimensionless analysis. Overcoming these challenges will allow MD simulations to advance our understanding of electrical double-layer behaviors and drive innovations in the development of future electrochemical technologies.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 2","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70009","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular dynamics (MD) simulations have become a powerful tool for studying double-layer systems, offering atomistic insights into their equilibrium properties and dynamic behaviors. These simulations have significantly advanced the understanding of key electrochemical mechanisms and the design of electrochemical devices. However, challenges remain in aligning simulations with the complexities of realistic applications. In this perspectiv, we highlight critical areas for enhancing the realism of MD simulations, including refining methods for representing electrode polarization, improving electrode and electrolyte models to incorporate structural and compositional complexities, and simulating charging and discharging processes under realistic conditions while considering associated thermal behaviors. We also stress the importance of scaling simulation results to experimental dimensions through multiscale modeling and dimensionless analysis. Overcoming these challenges will allow MD simulations to advance our understanding of electrical double-layer behaviors and drive innovations in the development of future electrochemical technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信