{"title":"PPDAMEGCN: Predicting piRNA-Disease Associations Based on Multi-Edge Type Graph Convolutional Network","authors":"Yinglong Peng, Shuang Chu, Xindi Huang, Yan Cheng","doi":"10.1049/syb2.70011","DOIUrl":null,"url":null,"abstract":"<p>Recently, many studies have proven that Piwi-interacting RNAs (piRNAs) play key roles in various biological processes and also associate with human complicated diseases. Therefore, in order to accelerate the traditional biomedical experimental methods for determining piRNA-disease associations, many computational approaches have been proposed. However, piRNA-disease associations can be classified into known and unknown associations, each of which may provide distinct types of information. Traditional graph convolutional networks (GCNs) typically treat all edges in a graph as identical, overlooking the fact that different edge types may carry different signals and influence the learning process in unique ways. In this study, we also provide a new piRNA-disease association prediction method, called PPDAMEGCN, based on a multi-edge type graph convolutional network. First, we calculate the piRNA sequence similarity based on the piRNA sequence information and Smith–Waterman method. The disease semantic similarity is also computed by disease ontology (DO). In addition, we calculate the Gaussian interaction profile (GIP) kernel similarities of piRNA and diseases through the known piRNA-disease associations. Then, we construct the piRNA similarity network by integrating the piRNA's sequence similarity and GIP similarity. We also construct the disease similarity network by integrating disease's semantic similarity and GIP similarity. Finally, we obtain the piRNA and disease embeddings by the multi-edge type graph convolutional network model on the heterogenous piRNA-disease association network. The piRNA-disease pair association probability score is calculated by a multilayer perceptron (MLP) with its concatenated embedding. We also compare PPDAMEGCN to other piRNA-disease prediction methods. The experimental results show that our method outperforms compared methods.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, many studies have proven that Piwi-interacting RNAs (piRNAs) play key roles in various biological processes and also associate with human complicated diseases. Therefore, in order to accelerate the traditional biomedical experimental methods for determining piRNA-disease associations, many computational approaches have been proposed. However, piRNA-disease associations can be classified into known and unknown associations, each of which may provide distinct types of information. Traditional graph convolutional networks (GCNs) typically treat all edges in a graph as identical, overlooking the fact that different edge types may carry different signals and influence the learning process in unique ways. In this study, we also provide a new piRNA-disease association prediction method, called PPDAMEGCN, based on a multi-edge type graph convolutional network. First, we calculate the piRNA sequence similarity based on the piRNA sequence information and Smith–Waterman method. The disease semantic similarity is also computed by disease ontology (DO). In addition, we calculate the Gaussian interaction profile (GIP) kernel similarities of piRNA and diseases through the known piRNA-disease associations. Then, we construct the piRNA similarity network by integrating the piRNA's sequence similarity and GIP similarity. We also construct the disease similarity network by integrating disease's semantic similarity and GIP similarity. Finally, we obtain the piRNA and disease embeddings by the multi-edge type graph convolutional network model on the heterogenous piRNA-disease association network. The piRNA-disease pair association probability score is calculated by a multilayer perceptron (MLP) with its concatenated embedding. We also compare PPDAMEGCN to other piRNA-disease prediction methods. The experimental results show that our method outperforms compared methods.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.