{"title":"Antiwhip Measures for High-Energy Piping in Nuclear Power Plants Using Lead Extrusion Impact Damping Devices: Tests and Simulations","authors":"Luwei Shi, Yiqian Lu, Lingyun Peng, Jingsheng Qiao, Ruhan Zhang, Tianwei Sun","doi":"10.1155/stc/8829452","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this study, the antiwhip capability of high-energy piping in nuclear power plants was investigated based on the basement structure of a conventional island in a nuclear power engineering project. A lead extrusion impact damping device was developed, and its mechanical performance was validated through uniaxial static loading tests. A 1:4 scaled-down test model was designed and fabricated using traditional energy-dissipating steel beams, lead extrusion impact damping, and concrete blocks as three types of antiwhip restraining devices. Impact test studies were conducted supplemented by destructive impact tests without antiwhip restraining devices. Finite element models were established using Ansys LS-DYNA simulation software, and simulations were conducted for these four scenarios. The antiwhip performances of different antiwhip measures were evaluated by comparing the test and finite element simulation results and considering factors such as the impact force, wall displacement, wall acceleration, and crack distribution and development. The results indicate that while traditional energy-dissipating steel beams continue to provide some antiwhip effectiveness, the lead extrusion impact damping solution exhibits a significantly improved performance with better control of the structural dynamic response. In contrast, the concrete block solution demonstrated a poorer performance, leading to severe damage in structures like those without antiwhip restraining devices.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8829452","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8829452","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the antiwhip capability of high-energy piping in nuclear power plants was investigated based on the basement structure of a conventional island in a nuclear power engineering project. A lead extrusion impact damping device was developed, and its mechanical performance was validated through uniaxial static loading tests. A 1:4 scaled-down test model was designed and fabricated using traditional energy-dissipating steel beams, lead extrusion impact damping, and concrete blocks as three types of antiwhip restraining devices. Impact test studies were conducted supplemented by destructive impact tests without antiwhip restraining devices. Finite element models were established using Ansys LS-DYNA simulation software, and simulations were conducted for these four scenarios. The antiwhip performances of different antiwhip measures were evaluated by comparing the test and finite element simulation results and considering factors such as the impact force, wall displacement, wall acceleration, and crack distribution and development. The results indicate that while traditional energy-dissipating steel beams continue to provide some antiwhip effectiveness, the lead extrusion impact damping solution exhibits a significantly improved performance with better control of the structural dynamic response. In contrast, the concrete block solution demonstrated a poorer performance, leading to severe damage in structures like those without antiwhip restraining devices.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.