Valentin Bonnet Gibet, Chloé Michaut, Thomas Bodin, Mark Wieczorek, Fabien Dubuffet
{"title":"Martian Highlands Differentiation Concomitant to Dichotomy Formation","authors":"Valentin Bonnet Gibet, Chloé Michaut, Thomas Bodin, Mark Wieczorek, Fabien Dubuffet","doi":"10.1029/2024JE008486","DOIUrl":null,"url":null,"abstract":"<p>The Martian surface composition appears mainly mafic but recent observations have revealed the presence of differentiated rocks, only in the highlands. Here, we demonstrate that differentiated melts can form during the construction of thick crustal regions on Mars by fractional crystallisation of a mafic magma, without plate tectonics. On a stagnant-lid planet, regions of thicker crusts contain more heat-producing elements and are associated to thinner lithospheres and to higher mantle melt fractions. This induces larger crustal extraction rates where the crust is thicker. This positive feedback mechanism is favored at large wavelengths and can explain the formation of the Martian dichotomy. We further develop an asymmetric parameterized thermal evolution model accounting for crustal extraction, where the well-mixed convective mantle is topped by two lithospheres (north/south) characterized by specific thermal and crustal structures. We use this model in a Bayesian inversion to investigate the conditions that allow crustal temperatures to be maintained above the basalt solidus during crustal growth, resulting in the formation of evolved melts. Among the thermal evolution models matching constraints on the structure of the Martian crust and mantle provided by the InSight NASA mission, a non-negligible fraction allows partial melting and differentiation of the crust in the south, which can occur very early (<span></span><math>\n <semantics>\n <mrow>\n <mo><</mo>\n </mrow>\n <annotation> ${< } $</annotation>\n </semantics></math>100 Myr) as well as during the Hesperian; partial melting in the north appears unlikely. Although crustal differentiation may occur on a hemispheric scale on Mars, its vertical extent would be limited to less than a third of the crustal thickness.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008486","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008486","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Martian surface composition appears mainly mafic but recent observations have revealed the presence of differentiated rocks, only in the highlands. Here, we demonstrate that differentiated melts can form during the construction of thick crustal regions on Mars by fractional crystallisation of a mafic magma, without plate tectonics. On a stagnant-lid planet, regions of thicker crusts contain more heat-producing elements and are associated to thinner lithospheres and to higher mantle melt fractions. This induces larger crustal extraction rates where the crust is thicker. This positive feedback mechanism is favored at large wavelengths and can explain the formation of the Martian dichotomy. We further develop an asymmetric parameterized thermal evolution model accounting for crustal extraction, where the well-mixed convective mantle is topped by two lithospheres (north/south) characterized by specific thermal and crustal structures. We use this model in a Bayesian inversion to investigate the conditions that allow crustal temperatures to be maintained above the basalt solidus during crustal growth, resulting in the formation of evolved melts. Among the thermal evolution models matching constraints on the structure of the Martian crust and mantle provided by the InSight NASA mission, a non-negligible fraction allows partial melting and differentiation of the crust in the south, which can occur very early (100 Myr) as well as during the Hesperian; partial melting in the north appears unlikely. Although crustal differentiation may occur on a hemispheric scale on Mars, its vertical extent would be limited to less than a third of the crustal thickness.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.