Cyber threat intelligence relies on network telescopes to detect attacks and emerging threats, traditionally utilizing a substantial portion of the IPv4 address space. However, the escalating scarcity and value of this resource force companies and research centers to grapple with the challenge of repurposing their address spaces, potentially impacting cybersecurity effectiveness and hindering research efforts. In this article, we first investigate the historical usage of IPv4 address space in network telescopes and the current reduction trend in several initiatives. Then, we examine the impact of reducing the allocated space on the ability of these systems to identify attackers and attack campaigns. We explore two network telescopes with the intention of assessing the impact of this reduction by quantifying the losses in several ways. Our findings reveal that even halving the allocated space for a network telescope may still permit the detection of 80% of unique cyberattack sources and the address allocation schema has little to no influence on this detection. We also found that most of the proportions and patterns remain present, albeit with reduced intensity.