Baoguo Yang, Zhe Bai, Qian Luo, Zhenyuan Tang, Jun Li
{"title":"Enhanced the Long-Cycle Performance of SiOx/C Anode Materials Via Ti and Sn Bimetallic Doping Strategy","authors":"Baoguo Yang, Zhe Bai, Qian Luo, Zhenyuan Tang, Jun Li","doi":"10.1002/cnma.202400637","DOIUrl":null,"url":null,"abstract":"<p>Silicon oxide (SiO<sub>x</sub>), due to its significant reversible capacity and significantly reduced volume expansion compared to pure silicon, holds promise as a candidate for high-performance lithium-ion battery anode materials. Unfortunately, SiO<sub>x</sub> still faces challenges for commercialization due to its volume expansion exceeding 160 %, low initial coulombic efficiency, and low electrical conductivity. In this study, we employed metal oxides containing Ti and Sn to dope SiO<sub>x</sub>/C materials, utilizing a sol-gel method to prepare SiO<sub>x</sub>/TiO<sub>2</sub>/SnO<sub>2</sub>/C composite anode materials. Furthermore, we adjusted the doping ratios of Sn and Ti to explore the optimal amount for improving the electrochemical performance of the material. Ultimately, it was found that the SiO<sub>x</sub>/TiO<sub>2</sub>/SnO<sub>2</sub>/C composite material prepared with a molar ratio of silicon, titanium, and tin at 10 : 0.7 : 0.3 exhibited the best performance, achieving an initial discharge capacity of 1845.33 mAh ⋅ g<sup>−1</sup> at a current density of 100 mA ⋅ g<sup>−1</sup> and maintaining a reversible capacity of 843.41 mAh ⋅ g<sup>−1</sup> after 100 cycles, with a capacity retention rate of 75.9 %. This work provides a relatively simple method to composite Ti and Sn metal oxides with SiO<sub>x</sub>, introducing additional conductive pathways to enhance the material‘s conductivity.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400637","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon oxide (SiOx), due to its significant reversible capacity and significantly reduced volume expansion compared to pure silicon, holds promise as a candidate for high-performance lithium-ion battery anode materials. Unfortunately, SiOx still faces challenges for commercialization due to its volume expansion exceeding 160 %, low initial coulombic efficiency, and low electrical conductivity. In this study, we employed metal oxides containing Ti and Sn to dope SiOx/C materials, utilizing a sol-gel method to prepare SiOx/TiO2/SnO2/C composite anode materials. Furthermore, we adjusted the doping ratios of Sn and Ti to explore the optimal amount for improving the electrochemical performance of the material. Ultimately, it was found that the SiOx/TiO2/SnO2/C composite material prepared with a molar ratio of silicon, titanium, and tin at 10 : 0.7 : 0.3 exhibited the best performance, achieving an initial discharge capacity of 1845.33 mAh ⋅ g−1 at a current density of 100 mA ⋅ g−1 and maintaining a reversible capacity of 843.41 mAh ⋅ g−1 after 100 cycles, with a capacity retention rate of 75.9 %. This work provides a relatively simple method to composite Ti and Sn metal oxides with SiOx, introducing additional conductive pathways to enhance the material‘s conductivity.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.