Enhanced the Long-Cycle Performance of SiOx/C Anode Materials Via Ti and Sn Bimetallic Doping Strategy

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-02-08 DOI:10.1002/cnma.202400637
Baoguo Yang, Zhe Bai, Qian Luo, Zhenyuan Tang, Jun Li
{"title":"Enhanced the Long-Cycle Performance of SiOx/C Anode Materials Via Ti and Sn Bimetallic Doping Strategy","authors":"Baoguo Yang,&nbsp;Zhe Bai,&nbsp;Qian Luo,&nbsp;Zhenyuan Tang,&nbsp;Jun Li","doi":"10.1002/cnma.202400637","DOIUrl":null,"url":null,"abstract":"<p>Silicon oxide (SiO<sub>x</sub>), due to its significant reversible capacity and significantly reduced volume expansion compared to pure silicon, holds promise as a candidate for high-performance lithium-ion battery anode materials. Unfortunately, SiO<sub>x</sub> still faces challenges for commercialization due to its volume expansion exceeding 160 %, low initial coulombic efficiency, and low electrical conductivity. In this study, we employed metal oxides containing Ti and Sn to dope SiO<sub>x</sub>/C materials, utilizing a sol-gel method to prepare SiO<sub>x</sub>/TiO<sub>2</sub>/SnO<sub>2</sub>/C composite anode materials. Furthermore, we adjusted the doping ratios of Sn and Ti to explore the optimal amount for improving the electrochemical performance of the material. Ultimately, it was found that the SiO<sub>x</sub>/TiO<sub>2</sub>/SnO<sub>2</sub>/C composite material prepared with a molar ratio of silicon, titanium, and tin at 10 : 0.7 : 0.3 exhibited the best performance, achieving an initial discharge capacity of 1845.33 mAh ⋅ g<sup>−1</sup> at a current density of 100 mA ⋅ g<sup>−1</sup> and maintaining a reversible capacity of 843.41 mAh ⋅ g<sup>−1</sup> after 100 cycles, with a capacity retention rate of 75.9 %. This work provides a relatively simple method to composite Ti and Sn metal oxides with SiO<sub>x</sub>, introducing additional conductive pathways to enhance the material‘s conductivity.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400637","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon oxide (SiOx), due to its significant reversible capacity and significantly reduced volume expansion compared to pure silicon, holds promise as a candidate for high-performance lithium-ion battery anode materials. Unfortunately, SiOx still faces challenges for commercialization due to its volume expansion exceeding 160 %, low initial coulombic efficiency, and low electrical conductivity. In this study, we employed metal oxides containing Ti and Sn to dope SiOx/C materials, utilizing a sol-gel method to prepare SiOx/TiO2/SnO2/C composite anode materials. Furthermore, we adjusted the doping ratios of Sn and Ti to explore the optimal amount for improving the electrochemical performance of the material. Ultimately, it was found that the SiOx/TiO2/SnO2/C composite material prepared with a molar ratio of silicon, titanium, and tin at 10 : 0.7 : 0.3 exhibited the best performance, achieving an initial discharge capacity of 1845.33 mAh ⋅ g−1 at a current density of 100 mA ⋅ g−1 and maintaining a reversible capacity of 843.41 mAh ⋅ g−1 after 100 cycles, with a capacity retention rate of 75.9 %. This work provides a relatively simple method to composite Ti and Sn metal oxides with SiOx, introducing additional conductive pathways to enhance the material‘s conductivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信