Microfluidic Generation of Calcium Alginate Hydrogel Beads using External Gelation for Microalgae Cultivation

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-02-09 DOI:10.1002/cnma.202400549
Du Tuan Tran, Fariba Malekpour Galogahi, Nhat-Khuong Nguyen, Uditha Roshan, Ajeet Singh Yadav, Kamalalayam Rajan Sreejith, Nam-Trung Nguyen
{"title":"Microfluidic Generation of Calcium Alginate Hydrogel Beads using External Gelation for Microalgae Cultivation","authors":"Du Tuan Tran,&nbsp;Fariba Malekpour Galogahi,&nbsp;Nhat-Khuong Nguyen,&nbsp;Uditha Roshan,&nbsp;Ajeet Singh Yadav,&nbsp;Kamalalayam Rajan Sreejith,&nbsp;Nam-Trung Nguyen","doi":"10.1002/cnma.202400549","DOIUrl":null,"url":null,"abstract":"<p>Calcium alginate hydrogel beads are spherical polymeric particles with highly crosslinked network structures, known for their excellent monodispersity and retention capabilities. These beads, produced by high-throughput droplet-based microfluidic techniques, are widely used for encapsulating and cultivating various microscopic particles such as cells. While internal gelation has been commonly utilized for crosslinking of calcium alginate hydrogel beads in microalgae encapsulation, the use of external gelation remains underexplored. This study utilized droplet-based microfluidic technology combined with external gelation to produce calcium alginate hydrogel beads for encapsulating the microalgal strain <i>Chlorella vulgaris</i>. Emulsions containing emulsified calcium ions served as the crosslinking phase. Initial geometrical analysis indicated that beads crosslinked with a high concentration of calcium ions (1 g/mL) achieve superior size uniformity and shape consistency. Microalgae cultivation experiments using these beads demonstrated steady growth of <i>Chlorella vulgaris</i> over a 5-day period, with the beads maintaining their geometric stability until the final day when minor cell leakage was observed. These results provide a foundation for future molecular-level studies on microalgae cultivation in hydrogel beads and suggest potential applications in fields requiring precisely controlled microalgae growth.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202400549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400549","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium alginate hydrogel beads are spherical polymeric particles with highly crosslinked network structures, known for their excellent monodispersity and retention capabilities. These beads, produced by high-throughput droplet-based microfluidic techniques, are widely used for encapsulating and cultivating various microscopic particles such as cells. While internal gelation has been commonly utilized for crosslinking of calcium alginate hydrogel beads in microalgae encapsulation, the use of external gelation remains underexplored. This study utilized droplet-based microfluidic technology combined with external gelation to produce calcium alginate hydrogel beads for encapsulating the microalgal strain Chlorella vulgaris. Emulsions containing emulsified calcium ions served as the crosslinking phase. Initial geometrical analysis indicated that beads crosslinked with a high concentration of calcium ions (1 g/mL) achieve superior size uniformity and shape consistency. Microalgae cultivation experiments using these beads demonstrated steady growth of Chlorella vulgaris over a 5-day period, with the beads maintaining their geometric stability until the final day when minor cell leakage was observed. These results provide a foundation for future molecular-level studies on microalgae cultivation in hydrogel beads and suggest potential applications in fields requiring precisely controlled microalgae growth.

Abstract Image

外凝胶微流控制备海藻酸钙水凝胶珠用于微藻培养
海藻酸钙水凝胶珠是具有高度交联网络结构的球形聚合物颗粒,以其优异的单分散性和保留能力而闻名。这些微珠是由高通量液滴微流控技术生产的,被广泛用于包封和培养各种微观颗粒,如细胞。虽然内部凝胶通常用于交联海藻酸钙水凝胶珠在微藻包封,使用外部凝胶仍未充分探索。本研究采用液滴微流控技术结合外凝胶法制备海藻酸钙水凝胶珠,用于包封小球藻微藻菌株。含有乳化钙离子的乳液作为交联相。初步的几何分析表明,与高浓度钙离子(1 g/mL)交联的微球具有优异的尺寸均匀性和形状一致性。微藻培养实验表明,在5天的时间内,普通小球藻的生长稳定,小球藻的几何形状保持稳定,直到最后一天出现少量的细胞渗漏。这些结果为未来在水凝胶珠中培养微藻的分子水平研究奠定了基础,并在需要精确控制微藻生长的领域提出了潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信