Developed liquified ethane production, storage and transportation using optimized liquefaction process: Design, energy optimization, and techno-economic feasibility
{"title":"Developed liquified ethane production, storage and transportation using optimized liquefaction process: Design, energy optimization, and techno-economic feasibility","authors":"Vahid Pirouzfar, Chia-Hung Su","doi":"10.1002/ep.14552","DOIUrl":null,"url":null,"abstract":"<p>The main focus of this research is to develop techniques in order to select the best option for refrigeration and liquefaction processes using double-walled tanks for storage and transport by means of different simulations as well as critical fluid conditions. Process simulation, energy analysis and economic evaluations have been applied to find the best process in this case study. Refprop, Aspen HYSYS, Aspen Process economic Analyzer software have been used for thermodynamic condition prediction, process simulation, and economic analysis, respectively. The results indicated that the best conditions for ethane storage and transport are achieved at the temperature ranging from −30 to −46°C in case of using liquefaction systems, which is attributable to the low energy consumption as well as low operating costs and low-cost investment. This cost would be very significant in comparison with the increase in storage volume at very low temperatures. The direct capital cost of implementing these projects will be in the range of $ 27 ~ 41 million as well as the cost of preparing and transporting $ 310 ~ 475 per ton. Employed technique and developed flowsheets can be used as a useful tool for design and optimization of appropriate gas liquefaction processes membranes with effective performance for various industrial applications.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"44 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14552","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The main focus of this research is to develop techniques in order to select the best option for refrigeration and liquefaction processes using double-walled tanks for storage and transport by means of different simulations as well as critical fluid conditions. Process simulation, energy analysis and economic evaluations have been applied to find the best process in this case study. Refprop, Aspen HYSYS, Aspen Process economic Analyzer software have been used for thermodynamic condition prediction, process simulation, and economic analysis, respectively. The results indicated that the best conditions for ethane storage and transport are achieved at the temperature ranging from −30 to −46°C in case of using liquefaction systems, which is attributable to the low energy consumption as well as low operating costs and low-cost investment. This cost would be very significant in comparison with the increase in storage volume at very low temperatures. The direct capital cost of implementing these projects will be in the range of $ 27 ~ 41 million as well as the cost of preparing and transporting $ 310 ~ 475 per ton. Employed technique and developed flowsheets can be used as a useful tool for design and optimization of appropriate gas liquefaction processes membranes with effective performance for various industrial applications.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.