Hybrid materials based on covalent organic frameworks for photocatalysis

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-12-09 DOI:10.1002/inf2.12646
Shunhang Wei, Ruipeng Hou, Qiong Zhu, Imran Shakir, Zebo Fang, Xiangfeng Duan, Yuxi Xu
{"title":"Hybrid materials based on covalent organic frameworks for photocatalysis","authors":"Shunhang Wei,&nbsp;Ruipeng Hou,&nbsp;Qiong Zhu,&nbsp;Imran Shakir,&nbsp;Zebo Fang,&nbsp;Xiangfeng Duan,&nbsp;Yuxi Xu","doi":"10.1002/inf2.12646","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic frameworks (COFs) feature π-conjugated structure, high porosity, structural regularity, large specific surface area, and good stability, being considered as ideal platform for photocatalytic application. Although single COFs have achieved significant progress in photocatalysis benefiting from their distinctive properties, the COFs-based hybrids provide an extraordinary opportunity to achieve superior photocatalytic performance. From the perspective of carrier transfer mechanism, a systematic summary of hybrids based on COFs and other functional materials (metal single atoms, metal clusters/nanoparticles, inorganic semiconductors, metal–organic frameworks, and other polymers) can offer valuable guidance for the design of COFs-based hybrids. In this review, the photocatalytic mechanism for hybrid materials (such as Schottky junction, type II heterojunction, Z-scheme heterojunction, and S-scheme heterojunction) is briefly introduced. Subsequently, the performance of COFs-based hybrids in photocatalytic water splitting, CO<sub>2</sub> reduction, and pollutant degradation are comprehensively reviewed. Specifically, the carrier separation and transfer in different types of hybrids are highlighted. Finally, the challenges and prospects of COFs-based hybrids for photocatalysis are envisaged. The insights presented in this review are expected to be helpful in the rational design of COFs-based hybrids to obtain outstanding photocatalytic activity.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 3","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12646","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12646","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) feature π-conjugated structure, high porosity, structural regularity, large specific surface area, and good stability, being considered as ideal platform for photocatalytic application. Although single COFs have achieved significant progress in photocatalysis benefiting from their distinctive properties, the COFs-based hybrids provide an extraordinary opportunity to achieve superior photocatalytic performance. From the perspective of carrier transfer mechanism, a systematic summary of hybrids based on COFs and other functional materials (metal single atoms, metal clusters/nanoparticles, inorganic semiconductors, metal–organic frameworks, and other polymers) can offer valuable guidance for the design of COFs-based hybrids. In this review, the photocatalytic mechanism for hybrid materials (such as Schottky junction, type II heterojunction, Z-scheme heterojunction, and S-scheme heterojunction) is briefly introduced. Subsequently, the performance of COFs-based hybrids in photocatalytic water splitting, CO2 reduction, and pollutant degradation are comprehensively reviewed. Specifically, the carrier separation and transfer in different types of hybrids are highlighted. Finally, the challenges and prospects of COFs-based hybrids for photocatalysis are envisaged. The insights presented in this review are expected to be helpful in the rational design of COFs-based hybrids to obtain outstanding photocatalytic activity.

Abstract Image

基于共价有机框架的光催化杂化材料
共价有机骨架(COFs)具有π共轭结构、高孔隙率、结构规整性、比表面积大、稳定性好等特点,是光催化应用的理想平台。虽然单个COFs由于其独特的特性在光催化方面取得了重大进展,但基于COFs的杂化材料提供了一个非凡的机会来实现卓越的光催化性能。从载流子转移机理的角度,系统总结基于COFs和其他功能材料(金属单原子、金属团簇/纳米颗粒、无机半导体、金属-有机框架等聚合物)的杂化体的研究成果,可以为基于COFs的杂化体的设计提供有价值的指导。本文简要介绍了Schottky结、II型异质结、z型异质结和s型异质结等杂化材料的光催化机理。随后,对cofs复合材料在光催化水分解、CO2还原和污染物降解等方面的性能进行了综述。重点介绍了不同类型杂化体中载流子的分离和转移。最后,展望了cofs复合材料光催化的挑战和前景。本文的研究成果将有助于cofs基复合材料的合理设计,以获得优异的光催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信