PIoT-oriented multi-target recognition of substation infrared images driven by deep learning

IF 0.9 Q4 TELECOMMUNICATIONS
Min Li, Tou Li, Xuan Zhang, Wei Zhang
{"title":"PIoT-oriented multi-target recognition of substation infrared images driven by deep learning","authors":"Min Li,&nbsp;Tou Li,&nbsp;Xuan Zhang,&nbsp;Wei Zhang","doi":"10.1002/itl2.573","DOIUrl":null,"url":null,"abstract":"<p>Substation infrared imaging plays a crucial role in condition monitoring and fault detection of Power Internet of Things (PIoT). However, the accurate and efficient recognition of multiple targets in substation infrared images remains a challenging task. This paper proposes a deep learning-based multi-target recognition framework for substation infrared images in PIoT. This paper presents a method for recognizing various electrical equipment in infrared images of substations using a faster region-based convolutional neural network (Faster RCNN). The optimization of Faster RCNN includes class rectification inspired by non-maximum suppression (NMS), enabling the correction of misclassified equipment parts and enhancing recognition accuracy. The approach combines NMS and class rectification to retain region proposals with optimal recognition performance. Experimental results demonstrate the effectiveness of the proposed method in improving the recognition accuracy of electrical equipment in infrared images.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Substation infrared imaging plays a crucial role in condition monitoring and fault detection of Power Internet of Things (PIoT). However, the accurate and efficient recognition of multiple targets in substation infrared images remains a challenging task. This paper proposes a deep learning-based multi-target recognition framework for substation infrared images in PIoT. This paper presents a method for recognizing various electrical equipment in infrared images of substations using a faster region-based convolutional neural network (Faster RCNN). The optimization of Faster RCNN includes class rectification inspired by non-maximum suppression (NMS), enabling the correction of misclassified equipment parts and enhancing recognition accuracy. The approach combines NMS and class rectification to retain region proposals with optimal recognition performance. Experimental results demonstrate the effectiveness of the proposed method in improving the recognition accuracy of electrical equipment in infrared images.

基于深度学习的变电站红外图像面向piot的多目标识别
变电站红外成像在电力物联网的状态监测和故障检测中起着至关重要的作用。然而,如何准确、高效地识别变电站红外图像中的多目标仍然是一项具有挑战性的任务。提出了一种基于深度学习的变电站红外图像多目标识别框架。本文提出了一种基于快速区域卷积神经网络(faster RCNN)的变电站红外图像中各种电气设备的识别方法。Faster RCNN的优化包括受非最大抑制(NMS)启发的类别整流,能够纠正错误分类的设备部件,提高识别精度。该方法结合了NMS和类校正,以保留最优识别性能的区域建议。实验结果表明,该方法能够有效地提高红外图像中电气设备的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信