Shams Forruque Ahmed, Md. Sakib Bin Alam, Maliha Kabir, Shaila Afrin, Sabiha Jannat Rafa, Aanushka Mehjabin, Amir H. Gandomi
{"title":"Unveiling the frontiers of deep learning: Innovations shaping diverse domains","authors":"Shams Forruque Ahmed, Md. Sakib Bin Alam, Maliha Kabir, Shaila Afrin, Sabiha Jannat Rafa, Aanushka Mehjabin, Amir H. Gandomi","doi":"10.1007/s10489-025-06259-x","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning (DL) allows computer models to learn, visualize, optimize, refine, and predict data. To understand its present state, examining the most recent advancements and applications of deep learning across various domains is essential. However, prior reviews focused on DL applications in only one or two domains. The current review thoroughly investigates the use of DL in four different broad fields due to the plenty of relevant research literature in these domains. This wide range of coverage provides a comprehensive and interconnected understanding of DL’s influence and opportunities, which is lacking in other reviews. The study also discusses DL frameworks and addresses the benefits and challenges of utilizing DL in each field, which is only occasionally available in other reviews. DL frameworks like TensorFlow and PyTorch make it easy to develop innovative DL applications across diverse domains by providing model development and deployment platforms. This helps bridge theoretical progress and practical implementation. Deep learning solves complex problems and advances technology in many fields, demonstrating its revolutionary potential and adaptability. CNN-LSTM models with attention mechanisms can forecast traffic with 99% accuracy. Fungal-diseased mango leaves can be classified with 97.13% accuracy by the multi-layer CNN model. However, deep learning requires rigorous data collection to analyze and process large amounts of data because it is independent of training data. Thus, large-scale medical, research, healthcare, and environmental data compilation are challenging, reducing deep learning effectiveness. Future research should address data volume, privacy, domain complexity, and data quality issues in DL datasets.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06259-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06259-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning (DL) allows computer models to learn, visualize, optimize, refine, and predict data. To understand its present state, examining the most recent advancements and applications of deep learning across various domains is essential. However, prior reviews focused on DL applications in only one or two domains. The current review thoroughly investigates the use of DL in four different broad fields due to the plenty of relevant research literature in these domains. This wide range of coverage provides a comprehensive and interconnected understanding of DL’s influence and opportunities, which is lacking in other reviews. The study also discusses DL frameworks and addresses the benefits and challenges of utilizing DL in each field, which is only occasionally available in other reviews. DL frameworks like TensorFlow and PyTorch make it easy to develop innovative DL applications across diverse domains by providing model development and deployment platforms. This helps bridge theoretical progress and practical implementation. Deep learning solves complex problems and advances technology in many fields, demonstrating its revolutionary potential and adaptability. CNN-LSTM models with attention mechanisms can forecast traffic with 99% accuracy. Fungal-diseased mango leaves can be classified with 97.13% accuracy by the multi-layer CNN model. However, deep learning requires rigorous data collection to analyze and process large amounts of data because it is independent of training data. Thus, large-scale medical, research, healthcare, and environmental data compilation are challenging, reducing deep learning effectiveness. Future research should address data volume, privacy, domain complexity, and data quality issues in DL datasets.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.