Solutions of a generalized constrained discrete KP hierarchy

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Xuepu Mu, Mengyao Chen, Jipeng Cheng, Jingsong He
{"title":"Solutions of a generalized constrained discrete KP hierarchy","authors":"Xuepu Mu,&nbsp;Mengyao Chen,&nbsp;Jipeng Cheng,&nbsp;Jingsong He","doi":"10.1134/S0040577925030043","DOIUrl":null,"url":null,"abstract":"<p> Solutions of a generalized constrained discrete KP (gcdKP) hierarchy with the constraint <span>\\(L^k=(L^k)_{\\geq m}+\\sum_{i=1}^lq_i\\Delta^{-1}\\Lambda^mr_i\\)</span> on the Lax operator are investigated by Darboux transformations <span>\\(T_D(f)=f^{[1]}\\cdot\\Delta\\cdot f^{-1}\\)</span> and <span>\\(T_I(g)=(g^{[-1]})^{-1}\\cdot\\Delta^{-1}\\cdot g\\)</span>. Due to the special constraint on the Lax operator, it can be shown that the generating functions <span>\\(f\\)</span> and <span>\\(g\\)</span> of the corresponding Darboux transformations can only be chosen from (adjoint) wave functions or <span>\\((L^k)_{&lt;m}=\\sum_{i=1}^lq_i\\Delta^{-1}\\Lambda^mr_i\\)</span>. We discuss successive application of Darboux transformations for the gcdKP hierarchy. Solutions of the gcdKP hierarchy are obtained from <span>\\(L^{\\{0\\}}=\\Lambda\\)</span> by Darboux transformations, with a method that is highly nontrivial due to the special constraint on the Lax operator. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"222 3","pages":"414 - 431"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925030043","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solutions of a generalized constrained discrete KP (gcdKP) hierarchy with the constraint \(L^k=(L^k)_{\geq m}+\sum_{i=1}^lq_i\Delta^{-1}\Lambda^mr_i\) on the Lax operator are investigated by Darboux transformations \(T_D(f)=f^{[1]}\cdot\Delta\cdot f^{-1}\) and \(T_I(g)=(g^{[-1]})^{-1}\cdot\Delta^{-1}\cdot g\). Due to the special constraint on the Lax operator, it can be shown that the generating functions \(f\) and \(g\) of the corresponding Darboux transformations can only be chosen from (adjoint) wave functions or \((L^k)_{<m}=\sum_{i=1}^lq_i\Delta^{-1}\Lambda^mr_i\). We discuss successive application of Darboux transformations for the gcdKP hierarchy. Solutions of the gcdKP hierarchy are obtained from \(L^{\{0\}}=\Lambda\) by Darboux transformations, with a method that is highly nontrivial due to the special constraint on the Lax operator.

广义约束离散KP层次的解
利用Darboux变换\(T_D(f)=f^{[1]}\cdot\Delta\cdot f^{-1}\)和\(T_I(g)=(g^{[-1]})^{-1}\cdot\Delta^{-1}\cdot g\)研究了Lax算子上约束为\(L^k=(L^k)_{\geq m}+\sum_{i=1}^lq_i\Delta^{-1}\Lambda^mr_i\)的广义约束离散KP (gcdKP)层次的解。由于Lax算子的特殊约束,可以证明对应的Darboux变换的生成函数\(f\)和\(g\)只能从(伴随)波函数或\((L^k)_{<m}=\sum_{i=1}^lq_i\Delta^{-1}\Lambda^mr_i\)中选择。讨论了达布变换在gcdKP层次中的连续应用。通过Darboux变换从\(L^{\{0\}}=\Lambda\)得到gcdKP层次的解,由于Lax算子的特殊约束,该方法具有高度非平凡性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信