{"title":"Model-independent test of the cosmic anisotropy with inverse distance ladder","authors":"Zong-Fan Yang, Da-Wei Yao, M. Le Delliou, Ke Wang","doi":"10.1140/epjc/s10052-025-13994-5","DOIUrl":null,"url":null,"abstract":"<div><p>If the Universe is endowed with cosmic anisotropy, it will have a preferred direction of expansion. By reconstructing the expansion history using a Gaussian process (GP), researchers can probe the cosmic anisotropy model-independently. In this paper, for the luminosity distance <span>\\(d_L(z)\\)</span> reconstruction, we turn to the inverse distance ladder, where type Ia supernovae (SNIa) from the Pantheon+ sample determine relative distances, and strongly gravitationally lensed quasars from the H0LiCOW sample anchor these relative distances with some absolute distance measurements. By isolating the anisotropic information that could be carried by the Hubble constant <span>\\(H_0\\)</span> and obtaining constraints on the intrinsic parameter of SNIa, the absolute magnitude <span>\\(M=-19.2522^{+0.0594}_{-0.0649}\\)</span> (at <span>\\(68\\%\\)</span> CL), we find that <span>\\(d_L(z)\\)</span> reconstructions from samples located in different regions of the galactic coordinate system are almost consistent with each other, while only a very weak preference for the cosmic anisotropy is found.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13994-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13994-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
If the Universe is endowed with cosmic anisotropy, it will have a preferred direction of expansion. By reconstructing the expansion history using a Gaussian process (GP), researchers can probe the cosmic anisotropy model-independently. In this paper, for the luminosity distance \(d_L(z)\) reconstruction, we turn to the inverse distance ladder, where type Ia supernovae (SNIa) from the Pantheon+ sample determine relative distances, and strongly gravitationally lensed quasars from the H0LiCOW sample anchor these relative distances with some absolute distance measurements. By isolating the anisotropic information that could be carried by the Hubble constant \(H_0\) and obtaining constraints on the intrinsic parameter of SNIa, the absolute magnitude \(M=-19.2522^{+0.0594}_{-0.0649}\) (at \(68\%\) CL), we find that \(d_L(z)\) reconstructions from samples located in different regions of the galactic coordinate system are almost consistent with each other, while only a very weak preference for the cosmic anisotropy is found.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.