{"title":"HDAC1 Promotes Hippocampal Neuronal Pyroptosis in Epileptic Mice Through the miR-15a-5p/Caspase-1 Axis","authors":"Yun Lv, Fenghua Sun, Binyu Pu","doi":"10.1007/s11064-025-04372-4","DOIUrl":null,"url":null,"abstract":"<div><p>Status epilepticus (SE) is a life-threatening disorder associated with neuronal pyroptosis. This study aims to explore the mechanism of HDAC1 in hippocampal neuronal pyroptosis induced by kainic acid in mice, providing a theoretical basis for SE treatment. A mouse model of SE was established by kainic acid. After sh-HDAC1 injection, the severity of SE and hippocampal neuronal damage were assessed. Cell model was established using kainic acid-induced HT22, followed by detection of HDAC1, miR-15a-5p, Caspase-1, cleaved Caspase-1, H3K9ac, and GSDMD-N using qRT-PCR and Western blot assays. Levels of IL-1β, IL-18, and LDH were measured. The enrichment of HDAC1 on the miR-15a-5p promoter was detected. The binding of miR-15a-5p to Caspase-1 was validated. We found that HDAC1 was highly expressed in kainic acid-induced SE. HDAC1 knockdown alleviated the symptoms of SE, inhibited cleaved Caspase-1, GSDMD-N, IL-1β, and IL-18, and suppressed hippocampal neuronal pyroptosis. HDAC1 bound to the miR-15a-5p promoter and reduced H3K9ac, thereby inhibiting miR-15a-5p expression. miR-15a-5p bound to Caspase-1 and inhibited Caspase-1 expression. Inhibiting miR-15a-5p or overexpressing Caspase-1 partially reversed the inhibitory effect of si-HDAC1 on kainic acid-induced cell pyroptosis. In conclusion, HDAC1 aggravates hippocampal neuronal pyroptosis in SE via the miR-15a-5p/Caspase-1 axis through deacetylation of H3K9.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04372-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Status epilepticus (SE) is a life-threatening disorder associated with neuronal pyroptosis. This study aims to explore the mechanism of HDAC1 in hippocampal neuronal pyroptosis induced by kainic acid in mice, providing a theoretical basis for SE treatment. A mouse model of SE was established by kainic acid. After sh-HDAC1 injection, the severity of SE and hippocampal neuronal damage were assessed. Cell model was established using kainic acid-induced HT22, followed by detection of HDAC1, miR-15a-5p, Caspase-1, cleaved Caspase-1, H3K9ac, and GSDMD-N using qRT-PCR and Western blot assays. Levels of IL-1β, IL-18, and LDH were measured. The enrichment of HDAC1 on the miR-15a-5p promoter was detected. The binding of miR-15a-5p to Caspase-1 was validated. We found that HDAC1 was highly expressed in kainic acid-induced SE. HDAC1 knockdown alleviated the symptoms of SE, inhibited cleaved Caspase-1, GSDMD-N, IL-1β, and IL-18, and suppressed hippocampal neuronal pyroptosis. HDAC1 bound to the miR-15a-5p promoter and reduced H3K9ac, thereby inhibiting miR-15a-5p expression. miR-15a-5p bound to Caspase-1 and inhibited Caspase-1 expression. Inhibiting miR-15a-5p or overexpressing Caspase-1 partially reversed the inhibitory effect of si-HDAC1 on kainic acid-induced cell pyroptosis. In conclusion, HDAC1 aggravates hippocampal neuronal pyroptosis in SE via the miR-15a-5p/Caspase-1 axis through deacetylation of H3K9.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.