Numerical study of the effects of crucible movement on the Ge growth process in an inductive Czochralski furnace

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-02-27 DOI:10.1039/D4CE01212G
Sanaz Hadidchi and Mohammad Hossein Tavakoli
{"title":"Numerical study of the effects of crucible movement on the Ge growth process in an inductive Czochralski furnace","authors":"Sanaz Hadidchi and Mohammad Hossein Tavakoli","doi":"10.1039/D4CE01212G","DOIUrl":null,"url":null,"abstract":"<p >The Czochralski (CZ) method is widely used for growing high-purity germanium (Ge) crystals, essential for infrared optics, radiation detectors, and high-mobility transistors. However, thermal stress accumulation, dislocation formation, and unstable growth interfaces remain significant challenges in germanium crystal fabrication. This study presents a numerical investigation of the impact of crucible movement on temperature distribution, melt convection, stress accumulation, and defect formation in CZ germanium growth. Results show that a moving crucible improves temperature uniformity, reducing radial thermal gradients that contribute to stress-induced defects. Melt convection patterns are stabilized, preventing undercooling at the crucible bottom and ensuring more uniform heat distribution. The crystal–melt interface remains smoother, reducing the formation of slip bands and stacking faults—defects that degrade electrical and optical performance in germanium devices. Furthermore, von Mises stress analysis confirms that crucible movement significantly lowers stress accumulation, decreasing dislocation density in the grown crystal. These findings align with experimental studies on germanium CZ growth and provide practical process optimizations for improving semiconductor-grade germanium crystal quality. The results have direct applications in infrared imaging, space solar cells, and high-speed electronic devices, where defect-free germanium is essential.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 13","pages":" 1986-1996"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01212g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Czochralski (CZ) method is widely used for growing high-purity germanium (Ge) crystals, essential for infrared optics, radiation detectors, and high-mobility transistors. However, thermal stress accumulation, dislocation formation, and unstable growth interfaces remain significant challenges in germanium crystal fabrication. This study presents a numerical investigation of the impact of crucible movement on temperature distribution, melt convection, stress accumulation, and defect formation in CZ germanium growth. Results show that a moving crucible improves temperature uniformity, reducing radial thermal gradients that contribute to stress-induced defects. Melt convection patterns are stabilized, preventing undercooling at the crucible bottom and ensuring more uniform heat distribution. The crystal–melt interface remains smoother, reducing the formation of slip bands and stacking faults—defects that degrade electrical and optical performance in germanium devices. Furthermore, von Mises stress analysis confirms that crucible movement significantly lowers stress accumulation, decreasing dislocation density in the grown crystal. These findings align with experimental studies on germanium CZ growth and provide practical process optimizations for improving semiconductor-grade germanium crystal quality. The results have direct applications in infrared imaging, space solar cells, and high-speed electronic devices, where defect-free germanium is essential.

Abstract Image

坩埚运动对感应式奇拉斯基炉中锗生长过程影响的数值研究
zzochralski (CZ)法被广泛用于生长高纯度锗(Ge)晶体,这对于红外光学、辐射探测器和高迁移率晶体管至关重要。然而,热应力积累、位错形成和生长界面不稳定仍然是锗晶体制备中的重大挑战。本文对坩埚运动对CZ锗生长过程中温度分布、熔体对流、应力积累和缺陷形成的影响进行了数值研究。结果表明,坩埚的移动改善了温度均匀性,减少了导致应力缺陷的径向热梯度。熔体对流模式稳定,防止坩埚底部过冷,确保更均匀的热量分布。晶体-熔体界面保持光滑,减少了滑移带和堆积缺陷的形成,这些缺陷会降低锗器件的电学和光学性能。此外,von Mises应力分析证实坩埚的移动显著降低了应力积累,降低了生长晶体中的位错密度。这些发现与锗CZ生长的实验研究相一致,为提高半导体级锗晶体质量提供了实际的工艺优化。研究结果可以直接应用于红外成像、太空太阳能电池和高速电子设备,在这些领域,无缺陷锗是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信