A novel bone metastasis-related gene signature for predicting prognosis, anti-androgen resistance, and drug choice in prostate cancer

IF 3.4 2区 医学 Q2 Medicine
Yu Luo , Xiaoqi Deng , Chengcheng Wei , Zhangcheng Liu , Liangdong Song , Kun Han , Yunfan Li , Jindong Zhang , Shuai Su , Delin Wang
{"title":"A novel bone metastasis-related gene signature for predicting prognosis, anti-androgen resistance, and drug choice in prostate cancer","authors":"Yu Luo ,&nbsp;Xiaoqi Deng ,&nbsp;Chengcheng Wei ,&nbsp;Zhangcheng Liu ,&nbsp;Liangdong Song ,&nbsp;Kun Han ,&nbsp;Yunfan Li ,&nbsp;Jindong Zhang ,&nbsp;Shuai Su ,&nbsp;Delin Wang","doi":"10.1016/j.jbo.2025.100673","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Prostate cancer (PCa) often metastasizes to the bone, posing a significant clinical challenge. This study aims to develop a bone metastasis-related risk model for PCa.</div></div><div><h3>Methods</h3><div>Bone metastasis-related genes (BMRGs) were identified through a combination of differential gene expression analysis and WGCNA using GSE32269 and GSE77930 datasets. Consensus clustering analysis was employed to determine the significance of these genes in molecular subtyping of PCa. LASSO-Cox regression analysis was utilized to construct the bone metastasis-related prognostic gene signature (BMRPS). The predictive performance of BMRPS was assessed using ROC curves, Kaplan-Meier survival curves, and a predictive nomogram. The immune landscape heterogeneity of subgroups was analyzed using CIBERSORT, ESTIMATE, and xCell algorithms. Drug sensitivity and molecular docking analysis were performed to identify drugs associated with BMRPS.</div></div><div><h3>Results</h3><div>Forty-four BMRGs associated with the prognosis of PCa were identified. Consensus clustering revealed the pivotal role of these genes in stratifying PCa into three distinct prognostic clusters. The BMRPS, consisting of 14 BMRGs, demonstrated excellent predictive accuracy for prognosis and served as an independent prognostic factor in PCa. BMRPS effectively predicted the overall survival of bone metastatic PCa and differentiated bone metastasis from other metastatic types. BMRPS showed a close correlation with the immune landscape and immunotherapeutic response biomarkers. Additionally, BMRPS was associated with anti-androgen resistance, and AZD8186 was identified as a potential BMRPS-related drug that holds promise for personalized treatment in PCa.</div></div><div><h3>Conclusion</h3><div>BMRPS facilitates the prediction of prognosis and resistance to anti-androgens in PCa. It also offers insights into the molecular mechanisms of bone metastasis and aids in drug selection for the treatment of PCa.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"52 ","pages":"Article 100673"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137425000144","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Prostate cancer (PCa) often metastasizes to the bone, posing a significant clinical challenge. This study aims to develop a bone metastasis-related risk model for PCa.

Methods

Bone metastasis-related genes (BMRGs) were identified through a combination of differential gene expression analysis and WGCNA using GSE32269 and GSE77930 datasets. Consensus clustering analysis was employed to determine the significance of these genes in molecular subtyping of PCa. LASSO-Cox regression analysis was utilized to construct the bone metastasis-related prognostic gene signature (BMRPS). The predictive performance of BMRPS was assessed using ROC curves, Kaplan-Meier survival curves, and a predictive nomogram. The immune landscape heterogeneity of subgroups was analyzed using CIBERSORT, ESTIMATE, and xCell algorithms. Drug sensitivity and molecular docking analysis were performed to identify drugs associated with BMRPS.

Results

Forty-four BMRGs associated with the prognosis of PCa were identified. Consensus clustering revealed the pivotal role of these genes in stratifying PCa into three distinct prognostic clusters. The BMRPS, consisting of 14 BMRGs, demonstrated excellent predictive accuracy for prognosis and served as an independent prognostic factor in PCa. BMRPS effectively predicted the overall survival of bone metastatic PCa and differentiated bone metastasis from other metastatic types. BMRPS showed a close correlation with the immune landscape and immunotherapeutic response biomarkers. Additionally, BMRPS was associated with anti-androgen resistance, and AZD8186 was identified as a potential BMRPS-related drug that holds promise for personalized treatment in PCa.

Conclusion

BMRPS facilitates the prediction of prognosis and resistance to anti-androgens in PCa. It also offers insights into the molecular mechanisms of bone metastasis and aids in drug selection for the treatment of PCa.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信