Modulation of OGG1 enzymatic activities by small molecules, promising tools and current challenges

IF 3 3区 生物学 Q2 GENETICS & HEREDITY
Xavier Renaudin , Anna Campalans
{"title":"Modulation of OGG1 enzymatic activities by small molecules, promising tools and current challenges","authors":"Xavier Renaudin ,&nbsp;Anna Campalans","doi":"10.1016/j.dnarep.2025.103827","DOIUrl":null,"url":null,"abstract":"<div><div>Oxidative DNA damage, resulting from endogenous cellular processes and external sources plays a significant role in mutagenesis, cancer progression, and the pathogenesis of neurological disorders. Base Excision Repair (BER) is involved in the repair of base modifications such as oxidations or alkylations as well as single strand breaks. The DNA glycosylase OGG1, initiates the BER pathway by the recognition and excision of 8oxoG, the most common oxidative DNA lesion, in both nuclear and mitochondrial DNA. Beyond DNA repair, OGG1 modulates transcription, particularly pro-inflammatory genes, linking oxidative DNA damage to broader biological processes like inflammation and aging. In cancer therapy, BER inhibition has emerged as a promising strategy to enhance treatment efficacy. Targeting OGG1 sensitizes cells to chemotherapies, radiotherapies, and PARP inhibitors, presenting opportunities to overcome therapy resistance. Additionally, OGG1 activators hold potential in mitigating oxidative damage associated with aging and neurological disorders. This review presents the development of several inhibitors and activators of OGG1 and how they have contributed to advance our knowledge in the fundamental functions of OGG1. We also discuss the new opportunities they provide for clinical applications in treating cancer, inflammation and neurological disorders. Finally, we also highlight the challenges in targeting OGG1, particularly regarding the off-target effects recently reported for some inhibitors and how we can overcome these limitations.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"149 ","pages":"Article 103827"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000230","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative DNA damage, resulting from endogenous cellular processes and external sources plays a significant role in mutagenesis, cancer progression, and the pathogenesis of neurological disorders. Base Excision Repair (BER) is involved in the repair of base modifications such as oxidations or alkylations as well as single strand breaks. The DNA glycosylase OGG1, initiates the BER pathway by the recognition and excision of 8oxoG, the most common oxidative DNA lesion, in both nuclear and mitochondrial DNA. Beyond DNA repair, OGG1 modulates transcription, particularly pro-inflammatory genes, linking oxidative DNA damage to broader biological processes like inflammation and aging. In cancer therapy, BER inhibition has emerged as a promising strategy to enhance treatment efficacy. Targeting OGG1 sensitizes cells to chemotherapies, radiotherapies, and PARP inhibitors, presenting opportunities to overcome therapy resistance. Additionally, OGG1 activators hold potential in mitigating oxidative damage associated with aging and neurological disorders. This review presents the development of several inhibitors and activators of OGG1 and how they have contributed to advance our knowledge in the fundamental functions of OGG1. We also discuss the new opportunities they provide for clinical applications in treating cancer, inflammation and neurological disorders. Finally, we also highlight the challenges in targeting OGG1, particularly regarding the off-target effects recently reported for some inhibitors and how we can overcome these limitations.
小分子调控OGG1酶活性,有前途的工具和当前的挑战
由内源性细胞过程和外部来源引起的DNA氧化损伤在突变、癌症进展和神经系统疾病的发病机制中起着重要作用。碱基切除修复(BER)涉及碱基修饰的修复,如氧化或烷基化以及单链断裂。DNA糖基化酶OGG1通过识别和切除8oxoG(细胞核和线粒体DNA中最常见的氧化性DNA损伤)来启动BER途径。除了DNA修复,OGG1还调节转录,特别是促炎基因,将氧化DNA损伤与炎症和衰老等更广泛的生物过程联系起来。在癌症治疗中,BER抑制已成为一种很有前景的提高治疗效果的策略。靶向OGG1使细胞对化疗、放疗和PARP抑制剂敏感,为克服治疗耐药性提供了机会。此外,OGG1激活剂在减轻与衰老和神经系统疾病相关的氧化损伤方面具有潜力。本文综述了OGG1的几种抑制剂和激活剂的发展,以及它们如何促进我们对OGG1基本功能的了解。我们还讨论了它们为治疗癌症、炎症和神经系统疾病的临床应用提供的新机会。最后,我们还强调了靶向OGG1的挑战,特别是最近报道的一些抑制剂的脱靶效应,以及我们如何克服这些限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信