{"title":"Modulation of OGG1 enzymatic activities by small molecules, promising tools and current challenges","authors":"Xavier Renaudin , Anna Campalans","doi":"10.1016/j.dnarep.2025.103827","DOIUrl":null,"url":null,"abstract":"<div><div>Oxidative DNA damage, resulting from endogenous cellular processes and external sources plays a significant role in mutagenesis, cancer progression, and the pathogenesis of neurological disorders. Base Excision Repair (BER) is involved in the repair of base modifications such as oxidations or alkylations as well as single strand breaks. The DNA glycosylase OGG1, initiates the BER pathway by the recognition and excision of 8oxoG, the most common oxidative DNA lesion, in both nuclear and mitochondrial DNA. Beyond DNA repair, OGG1 modulates transcription, particularly pro-inflammatory genes, linking oxidative DNA damage to broader biological processes like inflammation and aging. In cancer therapy, BER inhibition has emerged as a promising strategy to enhance treatment efficacy. Targeting OGG1 sensitizes cells to chemotherapies, radiotherapies, and PARP inhibitors, presenting opportunities to overcome therapy resistance. Additionally, OGG1 activators hold potential in mitigating oxidative damage associated with aging and neurological disorders. This review presents the development of several inhibitors and activators of OGG1 and how they have contributed to advance our knowledge in the fundamental functions of OGG1. We also discuss the new opportunities they provide for clinical applications in treating cancer, inflammation and neurological disorders. Finally, we also highlight the challenges in targeting OGG1, particularly regarding the off-target effects recently reported for some inhibitors and how we can overcome these limitations.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"149 ","pages":"Article 103827"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000230","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative DNA damage, resulting from endogenous cellular processes and external sources plays a significant role in mutagenesis, cancer progression, and the pathogenesis of neurological disorders. Base Excision Repair (BER) is involved in the repair of base modifications such as oxidations or alkylations as well as single strand breaks. The DNA glycosylase OGG1, initiates the BER pathway by the recognition and excision of 8oxoG, the most common oxidative DNA lesion, in both nuclear and mitochondrial DNA. Beyond DNA repair, OGG1 modulates transcription, particularly pro-inflammatory genes, linking oxidative DNA damage to broader biological processes like inflammation and aging. In cancer therapy, BER inhibition has emerged as a promising strategy to enhance treatment efficacy. Targeting OGG1 sensitizes cells to chemotherapies, radiotherapies, and PARP inhibitors, presenting opportunities to overcome therapy resistance. Additionally, OGG1 activators hold potential in mitigating oxidative damage associated with aging and neurological disorders. This review presents the development of several inhibitors and activators of OGG1 and how they have contributed to advance our knowledge in the fundamental functions of OGG1. We also discuss the new opportunities they provide for clinical applications in treating cancer, inflammation and neurological disorders. Finally, we also highlight the challenges in targeting OGG1, particularly regarding the off-target effects recently reported for some inhibitors and how we can overcome these limitations.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.