{"title":"Model averaging prediction for possibly nonstationary autoregressions","authors":"Tzu-Chi Lin , Chu-An Liu","doi":"10.1016/j.jeconom.2025.105994","DOIUrl":null,"url":null,"abstract":"<div><div>As an alternative to model selection (MS), this paper considers model averaging (MA) for integrated autoregressive processes of infinite order (AR(<span><math><mi>∞</mi></math></span>)). We derive a uniformly asymptotic expression for the mean squared prediction error (MSPE) of the averaging prediction with fixed weights and then propose a Mallows-type criterion to select the data-driven weights that minimize the MSPE asymptotically. We show that the proposed MA estimator and its variants, Shibata and Akaike MA estimators, are asymptotically optimal in the sense of achieving the lowest possible MSPE. We further demonstrate that MA can provide significant MSPE reduction over MS in the algebraic-decay case. These theoretical findings are extended to integrated AR(<span><math><mi>∞</mi></math></span>) models with deterministic time trends and are supported by Monte Carlo simulations and real data analysis.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105994"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030440762500048X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
As an alternative to model selection (MS), this paper considers model averaging (MA) for integrated autoregressive processes of infinite order (AR()). We derive a uniformly asymptotic expression for the mean squared prediction error (MSPE) of the averaging prediction with fixed weights and then propose a Mallows-type criterion to select the data-driven weights that minimize the MSPE asymptotically. We show that the proposed MA estimator and its variants, Shibata and Akaike MA estimators, are asymptotically optimal in the sense of achieving the lowest possible MSPE. We further demonstrate that MA can provide significant MSPE reduction over MS in the algebraic-decay case. These theoretical findings are extended to integrated AR() models with deterministic time trends and are supported by Monte Carlo simulations and real data analysis.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.