MoSe2 nanosheets anchored on Ti3C2 MXene hybrid nanostructure for boosting electrochemical performance of supercapacitor

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nagaraju Macherla , Manjula Nerella , Ravindranadh Koutavarapu , Jaesool Shim
{"title":"MoSe2 nanosheets anchored on Ti3C2 MXene hybrid nanostructure for boosting electrochemical performance of supercapacitor","authors":"Nagaraju Macherla ,&nbsp;Manjula Nerella ,&nbsp;Ravindranadh Koutavarapu ,&nbsp;Jaesool Shim","doi":"10.1016/j.matchemphys.2025.130765","DOIUrl":null,"url":null,"abstract":"<div><div>The significant advancements in supercapacitor technology promote the hunt for developing innovative electrode materials with enhanced electrochemical properties. This study delves into the comprehensive study of expanded MXene layers (e-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) decorated with flower-like MoSe<sub>2</sub> nanosheets (MoSe<sub>2</sub>/e-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) with a straightforward hydrothermal method by optimizing synthesis parameters (HF%, hydrothermal reaction time). XRD, FESEM, and XPS results revealed that MoSe<sub>2</sub> nanosheets are successfully anchored on MXene layers and developed strong interstitial contact. The electrochemical analysis demonstrated significant enhanced energy storage capacity along with promising cycle life for heterojunction MoSe<sub>2</sub>/e-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> hybrid nanostructured electrode. The MoSe<sub>2</sub>/e-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> hybrid nanostructured electrode delivered a specific capacity of 259 C g<sup>−1</sup> at a current density of 0.5 A g<sup>−1</sup>, whereas MoSe<sub>2</sub> delivered only 184 C g<sup>−1</sup>. In particular, hybrid nanostructure electrodes exhibited excellent cycle life (96.6 % after 5000 cycles). Moreover, the supercapacitor device assembled with the MoSe<sub>2</sub>/e-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> hybrid nanostructure delivered a maximum energy density of 12.92 Wh kg<sup>−1</sup> with power density of 1001.02 W kg<sup>−1</sup>,and retained 80 % of it's capacity after 5000 cycles at 8 A g<sup>−1</sup>. The enhanced properties of MoSe<sub>2</sub>/e-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> hybrid nanostructure clearly reveals its promising application for the advanced supercapacitor.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"339 ","pages":"Article 130765"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425004110","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The significant advancements in supercapacitor technology promote the hunt for developing innovative electrode materials with enhanced electrochemical properties. This study delves into the comprehensive study of expanded MXene layers (e-Ti3C2Tx) decorated with flower-like MoSe2 nanosheets (MoSe2/e-Ti3C2Tx) with a straightforward hydrothermal method by optimizing synthesis parameters (HF%, hydrothermal reaction time). XRD, FESEM, and XPS results revealed that MoSe2 nanosheets are successfully anchored on MXene layers and developed strong interstitial contact. The electrochemical analysis demonstrated significant enhanced energy storage capacity along with promising cycle life for heterojunction MoSe2/e-Ti3C2Tx hybrid nanostructured electrode. The MoSe2/e-Ti3C2Tx hybrid nanostructured electrode delivered a specific capacity of 259 C g−1 at a current density of 0.5 A g−1, whereas MoSe2 delivered only 184 C g−1. In particular, hybrid nanostructure electrodes exhibited excellent cycle life (96.6 % after 5000 cycles). Moreover, the supercapacitor device assembled with the MoSe2/e-Ti3C2Tx hybrid nanostructure delivered a maximum energy density of 12.92 Wh kg−1 with power density of 1001.02 W kg−1,and retained 80 % of it's capacity after 5000 cycles at 8 A g−1. The enhanced properties of MoSe2/e-Ti3C2Tx hybrid nanostructure clearly reveals its promising application for the advanced supercapacitor.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信