Microstructural and phase degradation of monocrystalline solar photovoltaic panels under extreme desert conditions: Insights from XRD and FTIR analysis

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nadir Hachemi , Elfahem Sakher , Fayçal Baira , Doghmane Houssem Eddine , Ahmed Bouraiou , Stefano Bellucci , Malik Albrahim , Yacine Benguerba
{"title":"Microstructural and phase degradation of monocrystalline solar photovoltaic panels under extreme desert conditions: Insights from XRD and FTIR analysis","authors":"Nadir Hachemi ,&nbsp;Elfahem Sakher ,&nbsp;Fayçal Baira ,&nbsp;Doghmane Houssem Eddine ,&nbsp;Ahmed Bouraiou ,&nbsp;Stefano Bellucci ,&nbsp;Malik Albrahim ,&nbsp;Yacine Benguerba","doi":"10.1016/j.matchemphys.2025.130742","DOIUrl":null,"url":null,"abstract":"<div><div>The durability of solar photovoltaic (PV) panels in desert environments is critical for sustainable energy production. This study investigates the microstructural degradation of monocrystalline PV panels installed in the Adrar region, which has been operational since 1993, 1997, and 2003. We analyzed the panels' structural transformations and phase compositions using advanced characterization techniques, including X-ray Diffraction (XRD) with Rietveld refinement and Fourier-Transform Infrared Spectroscopy (FTIR). Results indicate a progressive evolution in silicon lattice parameters, with unit cell volumes increasing from 159.0041 Å<sup>3</sup> to 161.5624 Å<sup>3</sup> over time, suggesting defect integration and atomic configuration changes due to environmental stressors. Conversely, methane hydrate-clathrate (MH-C) phases showed reduced lattice parameters, hinting at densification or material loss. The study also identified variations in silicon dioxide, with lattice contractions observed in newer panels. Quantitative phase analysis revealed a decline in silicon phase concentration from 98.8 wt% to 89.2 wt%, while silicon dioxide and (MH-C) concentrations increased with panel age. The findings provide critical insights into the degradation mechanisms of PV panels under desert conditions, guiding the development of more resilient and efficient solar energy systems. This research underscores the importance of understanding material degradation to enhance the sustainability of solar energy in harsh environments.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"339 ","pages":"Article 130742"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425003888","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The durability of solar photovoltaic (PV) panels in desert environments is critical for sustainable energy production. This study investigates the microstructural degradation of monocrystalline PV panels installed in the Adrar region, which has been operational since 1993, 1997, and 2003. We analyzed the panels' structural transformations and phase compositions using advanced characterization techniques, including X-ray Diffraction (XRD) with Rietveld refinement and Fourier-Transform Infrared Spectroscopy (FTIR). Results indicate a progressive evolution in silicon lattice parameters, with unit cell volumes increasing from 159.0041 Å3 to 161.5624 Å3 over time, suggesting defect integration and atomic configuration changes due to environmental stressors. Conversely, methane hydrate-clathrate (MH-C) phases showed reduced lattice parameters, hinting at densification or material loss. The study also identified variations in silicon dioxide, with lattice contractions observed in newer panels. Quantitative phase analysis revealed a decline in silicon phase concentration from 98.8 wt% to 89.2 wt%, while silicon dioxide and (MH-C) concentrations increased with panel age. The findings provide critical insights into the degradation mechanisms of PV panels under desert conditions, guiding the development of more resilient and efficient solar energy systems. This research underscores the importance of understanding material degradation to enhance the sustainability of solar energy in harsh environments.
太阳能光伏板在沙漠环境中的耐用性对于可持续能源生产至关重要。本研究调查了安装在阿德拉尔地区的单晶硅光伏板的微观结构退化情况,这些光伏板分别于 1993 年、1997 年和 2003 年投入使用。我们采用先进的表征技术,包括 X 射线衍射 (XRD) 和里特维尔德精炼法以及傅立叶变换红外光谱法 (FTIR),分析了面板的结构转变和相组成。结果表明,随着时间的推移,硅晶格参数逐渐演变,单胞体积从 159.0041 Å3 增加到 161.5624 Å3,这表明环境应力导致了缺陷整合和原子构型的变化。相反,甲烷水合物-阴极泥(MH-C)相的晶格参数降低,暗示着致密化或材料损失。研究还发现了二氧化硅的变化,在较新的面板中观察到晶格收缩。定量相分析表明,硅相的浓度从 98.8 wt% 下降到 89.2 wt%,而二氧化硅和(MH-C)的浓度则随着面板使用年限的增加而增加。这些研究结果为了解沙漠条件下光伏电池板的降解机制提供了重要启示,为开发更有弹性、更高效的太阳能系统提供了指导。这项研究强调了了解材料降解对提高太阳能在恶劣环境下的可持续性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信