{"title":"Energy stable and structure-preserving algorithms for the stochastic Galerkin system of 2D shallow water equations","authors":"Yekaterina Epshteyn , Akil Narayan , Yinqian Yu","doi":"10.1016/j.cma.2025.117932","DOIUrl":null,"url":null,"abstract":"<div><div>Shallow water equations (SWE) are fundamental nonlinear hyperbolic PDE-based models in fluid dynamics that are essential for studying a wide range of geophysical and engineering phenomena. Therefore, stable and accurate numerical methods for SWE are needed. Although some algorithms are well studied for deterministic SWE, more effort should be devoted to handling the SWE with uncertainty. In this paper, we incorporate uncertainty through a stochastic Galerkin (SG) framework, and building on an existing hyperbolicity-preserving SG formulation for 2D SWE, we construct the corresponding entropy flux pair, and develop structure-preserving, well-balanced, second-order energy conservative and energy stable finite volume schemes for the SG formulation of the two-dimensional shallow water system. We demonstrate the efficacy, applicability, and robustness of these structure-preserving algorithms through several challenging numerical experiments.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"440 ","pages":"Article 117932"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500204X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Shallow water equations (SWE) are fundamental nonlinear hyperbolic PDE-based models in fluid dynamics that are essential for studying a wide range of geophysical and engineering phenomena. Therefore, stable and accurate numerical methods for SWE are needed. Although some algorithms are well studied for deterministic SWE, more effort should be devoted to handling the SWE with uncertainty. In this paper, we incorporate uncertainty through a stochastic Galerkin (SG) framework, and building on an existing hyperbolicity-preserving SG formulation for 2D SWE, we construct the corresponding entropy flux pair, and develop structure-preserving, well-balanced, second-order energy conservative and energy stable finite volume schemes for the SG formulation of the two-dimensional shallow water system. We demonstrate the efficacy, applicability, and robustness of these structure-preserving algorithms through several challenging numerical experiments.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.