{"title":"Neural learning rules from associative networks theory","authors":"Daniele Lotito","doi":"10.1016/j.neucom.2025.129865","DOIUrl":null,"url":null,"abstract":"<div><div>Associative networks theory is increasingly providing tools to interpret update rules of artificial neural networks. At the same time, deriving neural learning rules from a solid theory remains a fundamental challenge.</div><div>We make some steps in this direction by considering general energy-based associative networks of continuous neurons and synapses that evolve in multiple time scales. We use the separation of these timescales to recover a limit in which the activation of the neurons, the energy of the system and the neural dynamics can all be recovered from a generating function. By allowing the generating function to depend on memories, we recover the conventional Hebbian modeling choice for the interaction strength between neurons. Finally, we propose and discuss a dynamics of memories that enables us to include learning in this framework.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"636 ","pages":"Article 129865"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225005375","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Associative networks theory is increasingly providing tools to interpret update rules of artificial neural networks. At the same time, deriving neural learning rules from a solid theory remains a fundamental challenge.
We make some steps in this direction by considering general energy-based associative networks of continuous neurons and synapses that evolve in multiple time scales. We use the separation of these timescales to recover a limit in which the activation of the neurons, the energy of the system and the neural dynamics can all be recovered from a generating function. By allowing the generating function to depend on memories, we recover the conventional Hebbian modeling choice for the interaction strength between neurons. Finally, we propose and discuss a dynamics of memories that enables us to include learning in this framework.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.