HSACT: A hierarchical semantic-aware CNN-Transformer for remote sensing image spectral super-resolution

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chengle Zhou , Zhi He , Liwei Zou , Yunfei Li , Antonio Plaza
{"title":"HSACT: A hierarchical semantic-aware CNN-Transformer for remote sensing image spectral super-resolution","authors":"Chengle Zhou ,&nbsp;Zhi He ,&nbsp;Liwei Zou ,&nbsp;Yunfei Li ,&nbsp;Antonio Plaza","doi":"10.1016/j.neucom.2025.129990","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperspectral remote sensing technology has demonstrated its spectral diagnosis advantages in numerous remote sensing observation fields. However, hyperspectral imaging is expensive and less portable compared to RGB imaging. To recover the corresponding hyperspectral image (HSI) from a remote sensing RGB image, this paper proposes a new hierarchical semantic-aware convolutional neural network (CNN)-Transformer (HSACT) for remote sensing image spectral super-resolution (SSR). Particularly, this work aims to reconstruct HSIs from RGB images within the same field of view using a lightweight semantic embedding architecture. Our HSACT consists of the following steps. First, an initial spectrum estimation module (from the RGB image to the HSI) is designed to progressively consider spectral estimation between RGB wavelength-inner and wavelength-outer information. Then, an attention-driven semantic-aware CNN-Transformer is developed to reconstruct the spatial and spectral details of HSI. Specifically, a trainable polymorphic superpixel convolution (PSConv) is proposed to capture features efficiently in the above module. Next, we introduce an information-lossless hierarchical network architecture to link the above modules and achieve end-to-end RGB image SSR through weight sharing. Experimental results on several datasets demonstrated that our HSACT outperforms traditional and advanced SSR methods. The codes of this paper are available from <span><span>https://github.com/chengle-zhou/HSACT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"636 ","pages":"Article 129990"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225006629","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral remote sensing technology has demonstrated its spectral diagnosis advantages in numerous remote sensing observation fields. However, hyperspectral imaging is expensive and less portable compared to RGB imaging. To recover the corresponding hyperspectral image (HSI) from a remote sensing RGB image, this paper proposes a new hierarchical semantic-aware convolutional neural network (CNN)-Transformer (HSACT) for remote sensing image spectral super-resolution (SSR). Particularly, this work aims to reconstruct HSIs from RGB images within the same field of view using a lightweight semantic embedding architecture. Our HSACT consists of the following steps. First, an initial spectrum estimation module (from the RGB image to the HSI) is designed to progressively consider spectral estimation between RGB wavelength-inner and wavelength-outer information. Then, an attention-driven semantic-aware CNN-Transformer is developed to reconstruct the spatial and spectral details of HSI. Specifically, a trainable polymorphic superpixel convolution (PSConv) is proposed to capture features efficiently in the above module. Next, we introduce an information-lossless hierarchical network architecture to link the above modules and achieve end-to-end RGB image SSR through weight sharing. Experimental results on several datasets demonstrated that our HSACT outperforms traditional and advanced SSR methods. The codes of this paper are available from https://github.com/chengle-zhou/HSACT.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信